Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Donaghey is active.

Publication


Featured researches published by Julie Donaghey.


Nature Biotechnology | 2010

Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs

Mitchell Guttman; Manuel Garber; Joshua Z. Levin; Julie Donaghey; James Robinson; Xian Adiconis; Lin Fan; Magdalena J. Koziol; Andreas Gnirke; Chad Nusbaum; John L. Rinn; Eric S. Lander; Aviv Regev

Massively parallel cDNA sequencing (RNA-Seq) provides an unbiased way to study a transcriptome, including both coding and noncoding genes. Until now, most RNA-Seq studies have depended crucially on existing annotations and thus focused on expression levels and variation in known transcripts. Here, we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using only RNA-Seq reads and the genome sequence. We applied it to mouse embryonic stem cells, neuronal precursor cells and lung fibroblasts to accurately reconstruct the full-length gene structures for most known expressed genes. We identified substantial variation in protein coding genes, including thousands of novel 5′ start sites, 3′ ends and internal coding exons. We then determined the gene structures of more than a thousand large intergenic noncoding RNA (lincRNA) and antisense loci. Our results open the way to direct experimental manipulation of thousands of noncoding RNAs and demonstrate the power of ab initio reconstruction to render a comprehensive picture of mammalian transcriptomes.RNA-Seq provides an unbiased way to study a transcriptome, including both coding and non-coding genes. To date, most RNA-Seq studies have critically depended on existing annotations, and thus focused on expression levels and variation in known transcripts. Here, we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using only RNA-Seq reads and the genome sequence. We apply it to mouse embryonic stem cells, neuronal precursor cells, and lung fibroblasts to accurately reconstruct the full-length gene structures for the vast majority of known expressed genes. We identify substantial variation in protein-coding genes, including thousands of novel 5′-start sites, 3′-ends, and internal coding exons. We then determine the gene structures of over a thousand lincRNA and antisense loci. Our results open the way to direct experimental manipulation of thousands of non-coding RNAs, and demonstrate the power of ab initio reconstruction to render a comprehensive picture of mammalian transcriptomes.


Nature | 2013

Charting a dynamic DNA methylation landscape of the human genome

Michael J. Ziller; Hongcang Gu; Fabian Müller; Julie Donaghey; Linus T.-Y. Tsai; Oliver Kohlbacher; Philip L. De Jager; Evan D. Rosen; David A. Bennett; Bradley E. Bernstein; Andreas Gnirke; Alexander Meissner

DNA methylation is a defining feature of mammalian cellular identity and is essential for normal development. Most cell types, except germ cells and pre-implantation embryos, display relatively stable DNA methylation patterns, with 70–80% of all CpGs being methylated. Despite recent advances, we still have a limited understanding of when, where and how many CpGs participate in genomic regulation. Here we report the in-depth analysis of 42 whole-genome bisulphite sequencing data sets across 30 diverse human cell and tissue types. We observe dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, most of which are distal to transcription start sites. These dynamic CpGs co-localize with gene regulatory elements, particularly enhancers and transcription-factor-binding sites, which allow identification of key lineage-specific regulators. In addition, differentially methylated regions (DMRs) often contain single nucleotide polymorphisms associated with cell-type-related diseases as determined by genome-wide association studies. The results also highlight the general inefficiency of whole-genome bisulphite sequencing, as 70–80% of the sequencing reads across these data sets provided little or no relevant information about CpG methylation. To demonstrate further the utility of our DMR set, we use it to classify unknown samples and identify representative signature regions that recapitulate major DNA methylation dynamics. In summary, although in theory every CpG can change its methylation state, our results suggest that only a fraction does so as part of coordinated regulatory programs. Therefore, our selected DMRs can serve as a starting point to guide new, more effective reduced representation approaches to capture the most informative fraction of CpGs, as well as further pinpoint putative regulatory elements.


Genome Biology | 2011

Improving RNA-Seq expression estimates by correcting for fragment bias

Adam Roberts; Cole Trapnell; Julie Donaghey; John L. Rinn; Lior Pachter

The biochemistry of RNA-Seq library preparation results in cDNA fragments that are not uniformly distributed within the transcripts they represent. This non-uniformity must be accounted for when estimating expression levels, and we show how to perform the needed corrections using a likelihood based approach. We find improvements in expression estimates as measured by correlation with independently performed qRT-PCR and show that correction of bias leads to improved replicability of results across libraries and sequencing technologies.


Cell | 2013

Transcriptional and epigenetic dynamics during specification of human embryonic stem cells.

Casey A. Gifford; Michael J. Ziller; Hongcang Gu; Cole Trapnell; Julie Donaghey; Alexander M. Tsankov; Alex K. Shalek; David R. Kelley; Alexander A. Shishkin; Robbyn Issner; Xiaolan Zhang; Michael J. Coyne; Jennifer L. Fostel; Laurie Holmes; Jim Meldrim; Mitchell Guttman; Charles B. Epstein; Hongkun Park; Oliver Kohlbacher; John L. Rinn; Andreas Gnirke; Eric S. Lander; Bradley E. Bernstein; Alexander Meissner

Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end, we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing, chromatin immunoprecipitation sequencing, and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition, we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches, leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions.


Cell | 2011

Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells.

Oren Ram; Alon Goren; Ido Amit; Noam Shoresh; Nir Yosef; Jason Ernst; Manolis Kellis; Melissa Gymrek; Robbyn Issner; Michael J. Coyne; Timothy Durham; Xiaolan Zhang; Julie Donaghey; Charles B. Epstein; Aviv Regev; Bradley E. Bernstein

Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.


Nature Genetics | 2015

Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells

Jing Liao; Rahul Karnik; Hongcang Gu; Michael J. Ziller; Kendell Clement; Alexander M. Tsankov; Veronika Akopian; Casey A. Gifford; Julie Donaghey; Christina Galonska; Ramona Pop; Deepak Reyon; Shengdar Q. Tsai; William Mallard; J. Keith Joung; John L. Rinn; Andreas Gnirke; Alexander Meissner

DNA methylation is a key epigenetic modification involved in regulating gene expression and maintaining genomic integrity. Here we inactivated all three catalytically active DNA methyltransferases (DNMTs) in human embryonic stem cells (ESCs) using CRISPR/Cas9 genome editing to further investigate the roles and genomic targets of these enzymes. Disruption of DNMT3A or DNMT3B individually as well as of both enzymes in tandem results in viable, pluripotent cell lines with distinct effects on the DNA methylation landscape, as assessed by whole-genome bisulfite sequencing. Surprisingly, in contrast to findings in mouse, deletion of DNMT1 resulted in rapid cell death in human ESCs. To overcome this immediate lethality, we generated a doxycycline-responsive tTA-DNMT1* rescue line and readily obtained homozygous DNMT1-mutant lines. However, doxycycline-mediated repression of exogenous DNMT1* initiates rapid, global loss of DNA methylation, followed by extensive cell death. Our data provide a comprehensive characterization of DNMT-mutant ESCs, including single-base genome-wide maps of the targets of these enzymes.


Nature | 2015

Transcription factor binding dynamics during human ES cell differentiation

Alexander M. Tsankov; Hongcang Gu; Veronika Akopian; Michael J. Ziller; Julie Donaghey; Ido Amit; Andreas Gnirke; Alexander Meissner

Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome-wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage-specific behaviour of selected factors. In addition to the orchestrated remodelling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer, and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signalling effectors, and the epigenome during human embryonic stem cell differentiation.


Nature | 2015

Dissecting neural differentiation regulatory networks through epigenetic footprinting

Michael J. Ziller; Reuven Edri; Yakey Yaffe; Julie Donaghey; Ramona Pop; William Mallard; Robbyn Issner; Casey A. Gifford; Alon Goren; Jeffrey Xing; Hongcang Gu; Davide Cacchiarelli; Alexander M. Tsankov; John L. Rinn; Tarjei S. Mikkelsen; Oliver Kohlbacher; Andreas Gnirke; Bradley E. Bernstein; Yechiel Elkabetz; Alexander Meissner

Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.


Cell | 2015

Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency

Davide Cacchiarelli; Cole Trapnell; Michael J. Ziller; Magali Soumillon; Marcella Cesana; Rahul Karnik; Julie Donaghey; Zachary D. Smith; Sutheera Ratanasirintrawoot; Xiaolan Zhang; Shannan J. Ho Sui; Zhaoting Wu; Veronika Akopian; Casey A. Gifford; John G. Doench; John L. Rinn; George Q. Daley; Alexander Meissner; Eric S. Lander; Tarjei S. Mikkelsen

Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here, we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered re-activation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PAPERCLIP.


Nature Genetics | 2018

Genetic determinants and epigenetic effects of pioneer-factor occupancy

Julie Donaghey; Sudhir Thakurela; Jocelyn Charlton; Jennifer S. Chen; Zachary D. Smith; Hongcang Gu; Ramona Pop; Kendell Clement; Elena K. Stamenova; Rahul Karnik; David R. Kelley; Casey A. Gifford; Davide Cacchiarelli; John L. Rinn; Andreas Gnirke; Michael J. Ziller; Alexander Meissner

Transcription factors (TFs) direct developmental transitions by binding to target DNA sequences, influencing gene expression and establishing complex gene-regultory networks. To systematically determine the molecular components that enable or constrain TF activity, we investigated the genomic occupancy of FOXA2, GATA4 and OCT4 in several cell types. Despite their classification as pioneer factors, all three TFs exhibit cell-type-specific binding, even when supraphysiologically and ectopically expressed. However, FOXA2 and GATA4 can be distinguished by low enrichment at loci that are highly occupied by these factors in alternative cell types. We find that expression of additional cofactors increases enrichment at a subset of these sites. Finally, FOXA2 occupancy and changes to DNA accessibility can occur in G1-arrested cells, but subsequent loss of DNA methylation requires DNA replication.Investigation of FOXA2, GATA4 and OCT4 binding across several cell types provides insights into the genetic determinants and epigenetic effects of pioneer-factor occupancy. The data suggest that FOXA2 samples most of its potential binding sites but is stabilized at only a subset of targets.

Collaboration


Dive into the Julie Donaghey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aviv Regev

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge