Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie E. Horvath is active.

Publication


Featured researches published by Julie E. Horvath.


PLOS Genetics | 2011

A Molecular Phylogeny of Living Primates

Polina L. Perelman; Warren E. Johnson; Christian Roos; Héctor N. Seuánez; Julie E. Horvath; Miguel A. M. Moreira; Bailey Kessing; Joan Pontius; Melody E. Roelke; Y. Rumpler; Maria Paula Cruz Schneider; Artur Silva; Stephen J. O'Brien; Jill Pecon-Slattery

Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.


Nature | 2004

The structure and evolution of centromeric transition regions within the human genome

Xinwei She; Julie E. Horvath; Zhaoshi Jiang; Ge Liu; Terrence S. Furey; Laurie A. Christ; Royden A. Clark; Tina Graves; Cassy L. Gulden; Can Alkan; Jeffrey A. Bailey; Cenk Sahinalp; Mariano Rocchi; David Haussler; Richard Wilson; Webb Miller; Stuart Schwartz; Evan E. Eichler

An understanding of how centromeric transition regions are organized is a critical aspect of chromosome structure and function; however, the sequence context of these regions has been difficult to resolve on the basis of the draft genome sequence. We present a detailed analysis of the structure and assembly of all human pericentromeric regions (5 megabases). Most chromosome arms (35 out of 43) show a gradient of dwindling transcriptional diversity accompanied by an increasing number of interchromosomal duplications in proximity to the centromere. At least 30% of the centromeric transition region structure originates from euchromatic gene-containing segments of DNA that were duplicatively transposed towards pericentromeric regions at a rate of six–seven events per million years during primate evolution. This process has led to the formation of a minimum of 28 new transcripts by exon exaptation and exon shuffling, many of which are primarily expressed in the testis. The distribution of these duplicated segments is nonrandom among pericentromeric regions, suggesting that some regions have served as preferential acceptors of euchromatic DNA.


Genome Research | 2008

Development and application of a phylogenomic toolkit: Resolving the evolutionary history of Madagascar’s lemurs

Julie E. Horvath; David W. Weisrock; Stephanie L. Embry; Isabella Fiorentino; James P. Balhoff; Peter M. Kappeler; Gregory A. Wray; Huntington F. Willard; Anne D. Yoder

Lemurs and the other strepsirrhine primates are of great interest to the primate genomics community due to their phylogenetic placement as the sister lineage to all other primates. Previous attempts to resolve the phylogeny of lemurs employed limited mitochondrial or small nuclear data sets, with many relationships poorly supported or entirely unresolved. We used genomic resources to develop 11 novel markers from nine chromosomes, representing approximately 9 kb of nuclear sequence data. In combination with previously published nuclear and mitochondrial loci, this yields a data set of more than 16 kb and adds approximately 275 kb of DNA sequence to current databases. Our phylogenetic analyses confirm hypotheses of lemuriform monophyly and provide robust resolution of the phylogenetic relationships among the five lemuriform families. We verify that the genus Daubentonia is the sister lineage to all other lemurs. The Cheirogaleidae and Lepilemuridae are sister taxa and together form the sister lineage to the Indriidae; this clade is the sister lineage to the Lemuridae. Divergence time estimates indicate that lemurs are an ancient group, with their initial diversification occurring around the Cretaceous-Tertiary boundary. Given the power of this data set to resolve branches in a notoriously problematic area of primate phylogeny, we anticipate that our phylogenomic toolkit will be of value to other studies of primate phylogeny and diversification. Moreover, the methods applied will be broadly applicable to other taxonomic groups where phylogenetic relationships have been notoriously difficult to resolve.


Scientific Reports | 2013

Genetic origins of social networks in rhesus macaques

Lauren J. N. Brent; Sarah R. Heilbronner; Julie E. Horvath; Janis Gonzalez-Martinez; Angelina V. Ruiz-Lambides; Athy Robinson; J. H. Pate Skene; Michael L. Platt

Sociality is believed to have evolved as a strategy for animals to cope with their environments. Yet the genetic basis of sociality remains unclear. Here we provide evidence that social network tendencies are heritable in a gregarious primate. The tendency for rhesus macaques, Macaca mulatta, to be tied affiliatively to others via connections mediated by their social partners - analogous to friends of friends in people - demonstrated additive genetic variance. Affiliative tendencies were predicted by genetic variation at two loci involved in serotonergic signalling, although this result did not withstand correction for multiple tests. Aggressive tendencies were also heritable and were related to reproductive output, a fitness proxy. Our findings suggest that, like humans, the skills and temperaments that shape the formation of multi-agent relationships have a genetic basis in nonhuman primates, and, as such, begin to fill the gaps in our understanding of the genetic basis of sociality.


Genome Biology and Evolution | 2010

Both Noncoding and Protein-Coding RNAs Contribute to Gene Expression Evolution in the Primate Brain

Courtney C. Babbitt; Olivier Fedrigo; Adam D. Pfefferle; Alan P. Boyle; Julie E. Horvath; Terrence S. Furey; Gregory A. Wray

Despite striking differences in cognition and behavior between humans and our closest primate relatives, several studies have found little evidence for adaptive change in protein-coding regions of genes expressed primarily in the brain. Instead, changes in gene expression may underlie many cognitive and behavioral differences. Here, we used digital gene expression: tag profiling (here called Tag-Seq, also called DGE:tag profiling) to assess changes in global transcript abundance in the frontal cortex of the brains of 3 humans, 3 chimpanzees, and 3 rhesus macaques. A substantial fraction of transcripts we identified as differentially transcribed among species were not assayed in previous studies based on microarrays. Differentially expressed tags within coding regions are enriched for gene functions involved in synaptic transmission, transport, oxidative phosphorylation, and lipid metabolism. Importantly, because Tag-Seq technology provides strand-specific information about all polyadenlyated transcripts, we were able to assay expression in noncoding intragenic regions, including both sense and antisense noncoding transcripts (relative to nearby genes). We find that many noncoding transcripts are conserved in both location and expression level between species, suggesting a possible functional role. Lastly, we examined the overlap between differential gene expression and signatures of positive selection within putative promoter regions, a sign that these differences represent adaptations during human evolution. Comparative approaches may provide important insights into genes responsible for differences in cognitive functions between humans and nonhuman primates, as well as highlighting new candidate genes for studies investigating neurological disorders.


Proceedings of the Royal Society B: Biological Sciences | 2016

Diversity and evolution of the primate skin microbiome

Amy M. Savage; Julie M. Urban; Megan E. Ehlers; J. H. Pate Skene; Michael L. Platt; Robert R. Dunn; Julie E. Horvath

Skin microbes play a role in human body odour, health and disease. Compared with gut microbes, we know little about the changes in the composition of skin microbes in response to evolutionary changes in hosts, or more recent behavioural and cultural changes in humans. No studies have used sequence-based approaches to consider the skin microbe communities of gorillas and chimpanzees, for example. Comparison of the microbial associates of non-human primates with those of humans offers unique insights into both the ancient and modern features of our skin-associated microbes. Here we describe the microbes found on the skin of humans, chimpanzees, gorillas, rhesus macaques and baboons. We focus on the bacterial and archaeal residents in the axilla using high-throughput sequencing of the 16S rRNA gene. We find that human skin microbial communities are unique relative to those of other primates, in terms of both their diversity and their composition. These differences appear to reflect both ancient shifts during millions of years of primate evolution and more recent changes due to modern hygiene.


Genome Research | 2011

Comparative analysis of the primate X-inactivation center region and reconstruction of the ancestral primate XIST locus

Julie E. Horvath; Christina B. Sheedy; Stephanie L. Merrett; Abdoulaye Baniré Diallo; David L. Swofford; Nisc Comparative Sequencing Program; Eric D. Green; Huntington F. Willard

Here we provide a detailed comparative analysis across the candidate X-Inactivation Center (XIC) region and the XIST locus in the genomes of six primates and three mammalian outgroup species. Since lemurs and other strepsirrhine primates represent the sister lineage to all other primates, this analysis focuses on lemurs to reconstruct the ancestral primate sequences and to gain insight into the evolution of this region and the genes within it. This comparative evolutionary genomics approach reveals significant expansion in genomic size across the XIC region in higher primates, with minimal size alterations across the XIST locus itself. Reconstructed primate ancestral XIC sequences show that the most dramatic changes during the past 80 million years occurred between the ancestral primate and the lineage leading to Old World monkeys. In contrast, the XIST locus compared between human and the primate ancestor does not indicate any dramatic changes to exons or XIST-specific repeats; rather, evolution of this locus reflects small incremental changes in overall sequence identity and short repeat insertions. While this comparative analysis reinforces that the region around XIST has been subject to significant genomic change, even among primates, our data suggest that evolution of the XIST sequences themselves represents only small lineage-specific changes across the past 80 million years.


PeerJ | 2016

The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome

Julie M. Urban; Daniel J. Fergus; Amy M. Savage; Megan Ehlers; Holly L. Menninger; Robert R. Dunn; Julie E. Horvath

An ever expanding body of research investigates the human microbiome in general and the skin microbiome in particular. Microbiomes vary greatly from individual to individual. Understanding the factors that account for this variation, however, has proven challenging, with many studies able to account statistically for just a small proportion of the inter-individual variation in the abundance, species richness or composition of bacteria. The human armpit has long been noted to host a high biomass bacterial community, and recent studies have highlighted substantial inter-individual variation in armpit bacteria, even relative to variation among individuals for other body habitats. One obvious potential explanation for this variation has to do with the use of personal hygiene products, particularly deodorants and antiperspirants. Here we experimentally manipulate product use to examine the abundance, species richness, and composition of bacterial communities that recolonize the armpits of people with different product use habits. In doing so, we find that when deodorant and antiperspirant use were stopped, culturable bacterial density increased and approached that found on individuals who regularly do not use any product. In addition, when antiperspirants were subsequently applied, bacterial density dramatically declined. These culture-based results are in line with sequence-based comparisons of the effects of long-term product use on bacterial species richness and composition. Sequence-based analyses suggested that individuals who habitually use antiperspirant tended to have a greater richness of bacterial OTUs in their armpits than those who use deodorant. In addition, individuals who used antiperspirants or deodorants long-term, but who stopped using product for two or more days as part of this study, had armpit communities dominated by Staphylococcaceae, whereas those of individuals in our study who habitually used no products were dominated by Corynebacterium. Collectively these results suggest a strong effect of product use on the bacterial composition of armpits. Although stopping the use of deodorant and antiperspirant similarly favors presence of Staphylococcaceae over Corynebacterium, their differential modes of action exert strikingly different effects on the richness of other bacteria living in armpit communities.


Cerebral Cortex | 2015

Analysis of Synaptic Gene Expression in the Neocortex of Primates Reveals Evolutionary Changes in Glutamatergic Neurotransmission

Gerard Muntané; Julie E. Horvath; Patrick R. Hof; John J. Ely; William D. Hopkins; Mary Ann Raghanti; Albert H. Lewandowski; Gregory A. Wray; Chet C. Sherwood

Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory.


Nature Ecology and Evolution | 2018

Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression

Camille Berthelot; Diego Villar; Julie E. Horvath; Duncan T. Odom; Paul Flicek

To gain insight into how mammalian gene expression is controlled by rapidly evolving regulatory elements, we jointly analysed promoter and enhancer activity with downstream transcription levels in liver samples from 15 species. Genes associated with complex regulatory landscapes generally exhibit high expression levels that remain evolutionarily stable. While the number of regulatory elements is the key driver of transcriptional output and resilience, regulatory conservation matters: elements active across mammals most effectively stabilize gene expression. In contrast, recently evolved enhancers typically contribute weakly, consistent with their high evolutionary plasticity. These effects are observed across the entire mammalian clade and are robust to potential confounders, such as the gene expression level. Using liver as a representative somatic tissue, our results illuminate how the evolutionary stability of gene expression is profoundly entwined with both the number and conservation of surrounding promoters and enhancers.Analysis of promoter and enhancer activity and levels of downstream transcripts in liver samples from 15 mammalian species finds an association between the complexity of the regulatory landscape and the evolutionary stability of gene expression.

Collaboration


Dive into the Julie E. Horvath's collaboration.

Top Co-Authors

Avatar

Michael L. Platt

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert R. Dunn

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge