Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Hollien is active.

Publication


Featured researches published by Julie Hollien.


Science | 2006

Decay of Endoplasmic Reticulum-Localized mRNAs During the Unfolded Protein Response

Julie Hollien; Jonathan S. Weissman

The unfolded protein response (UPR) allows the endoplasmic reticulum (ER) to recover from the accumulation of misfolded proteins, in part by increasing its folding capacity. Inositol-requiring enzyme–1 (IRE1) promotes this remodeling by detecting misfolded ER proteins and activating a transcription factor, X-box–binding protein 1, through endonucleolytic cleavage of its messenger RNA (mRNA). Here, we report that IRE1 independently mediates the rapid degradation of a specific subset of mRNAs, based both on their localization to the ER membrane and on the amino acid sequence they encode. This response is well suited to complement other UPR mechanisms because it could selectively halt production of proteins that challenge the ER and clear the translocation and folding machinery for the subsequent remodeling process.


Journal of Cell Biology | 2009

Regulated Ire1-dependent decay of messenger RNAs in mammalian cells

Julie Hollien; Jonathan H. Lin; Han Li; Nicole Stevens; Peter Walter; Jonathan S. Weissman

Maintenance of endoplasmic reticulum (ER) function is achieved in part through Ire1 (inositol-requiring enzyme 1), a transmembrane protein activated by protein misfolding in the ER. The cytoplasmic nuclease domain of Ire1 cleaves the messenger RNA (mRNA) encoding XBP-1 (X-box-binding protein 1), enabling splicing and production of this active transcription factor. We recently showed that Ire1 activation independently induces the rapid turnover of mRNAs encoding membrane and secreted proteins in Drosophila melanogaster cells through a pathway we call regulated Ire1-dependent decay (RIDD). In this study, we show that mouse fibroblasts expressing wild-type Ire1 but not an Ire1 variant lacking nuclease activity also degrade mRNAs in response to ER stress. Using a second variant of Ire1 that is activated by a small adenosine triphosphate analogue, we show that although XBP-1 splicing can be artificially induced in the absence of ER stress, RIDD appears to require both Ire1 activity and ER stress. Our data suggest that cells use a multitiered mechanism by which different conditions in the ER lead to distinct outputs from Ire1.


Annual Review of Genetics | 2012

The Unfolded Protein Response in Secretory Cell Function

Kristin A. Moore; Julie Hollien

The endoplasmic reticulum (ER) controls many important aspects of cellular function, including processing of secreted and membrane proteins, synthesis of membranes, and calcium storage. Maintenance of ER function is controlled through a network of signaling pathways collectively known as the unfolded protein response (UPR). The UPR balances the load of incoming proteins with the folding capacity of the ER and allows cells to adapt to situations that disrupt this balance. This disruption is referred to as ER stress. Although ER stress often arises in pathological situations, the UPR plays a central role in the normal development and function of cells specializing in secretion. Many aspects of this response are conserved broadly across eukaryotes; most organisms use some subset of a group of ER transmembrane proteins to signal to the nucleus and induce a broad transcriptional upregulation of genes involved in ER function. However, new developments in metazoans, plants, and fungi illustrate interesting variations on this theme. Here, we summarize mechanisms for detecting and counteracting ER stress, the role of the UPR in normal secretory cell function, and how these pathways vary across organisms and among different tissues and cell types.


Molecular Biology of the Cell | 2009

Analysis of Dom34 and Its Function in No-Go Decay

Dario O. Passos; Meenakshi K. Doma; Christopher J. Shoemaker; Denise Muhlrad; Rachel Green; Jonathan S. Weissman; Julie Hollien; Roy Parker

Eukaryotic mRNAs are subject to quality control mechanisms that degrade defective mRNAs. In yeast, mRNAs with stalls in translation elongation are targeted for endonucleolytic cleavage by No-Go decay (NGD). The cleavage triggered by No-Go decay is dependent on Dom34p and Hbs1p, and Dom34 has been proposed to be the endonuclease responsible for mRNA cleavage. We created several Dom34 mutants and examined their effects on NGD in yeast. We identified mutations in several loops of the Dom34 structure that affect NGD. In contrast, mutations inactivating the proposed nuclease domain do not affect NGD in vivo. Moreover, we observed that overexpression of the Rps30a protein, a high copy suppressor of dom34Delta cold sensitivity, can restore some mRNA cleavage in a dom34Delta strain. These results identify important functional regions of Dom34 and suggest that the proposed endonuclease activity of Dom34 is not required for mRNA cleavage in NGD. We also provide evidence that the process of NGD is conserved in insect cells. On the basis of these results and the process of translation termination, we suggest a multistep model for the process of NGD.


Biochimica et Biophysica Acta | 2013

Evolution of the unfolded protein response

Julie Hollien

The unfolded protein response (UPR) is a network of signaling pathways that responds to stress in the endoplasmic reticulum (ER). The general output of the UPR is to upregulate genes involved in ER function, thus restoring and/or increasing the capacity of the ER to fold and process proteins. In parallel, many organisms have mechanisms for limiting the load on the ER by attenuating translation or degrading ER-targeted mRNAs. Despite broad conservation of these signaling pathways across eukaryotes, interesting variations demonstrate a variety of mechanisms for managing ER stress. How do early-diverging protozoa respond to stress when they lack traditional transcriptional regulation? What is the role of the ER stress sensor Ire1 in fungal species that are missing its main target? Here I describe how diverse species have optimized the UPR to fit their needs. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.


Molecular Biology of the Cell | 2013

Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells

Deepika Gaddam; Nicole Stevens; Julie Hollien

Endoplasmic reticulum (ER) stress induces an mRNA decay pathway termed regulated Ire-dependent decay (RIDD). This study shows that in Drosophila cells, ER association is sufficient for targeting mRNAs to RIDD and most membrane-associated mRNAs are degraded more rapidly during ER stress. It is also reported that a small number of mRNAs are specifically protected from this default pathway.


eLife | 2016

Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability

Jonathan O. Nelson; Kristin A. Moore; Alex Chapin; Julie Hollien; Mark M. Metzstein

The nonsense-mediated mRNA decay (NMD) pathway functions to degrade both abnormal and wild-type mRNAs. NMD is essential for viability in most organisms, but the molecular basis for this requirement is unknown. Here we show that a single, conserved NMD target, the mRNA coding for the stress response factor growth arrest and DNA-damage inducible 45 (GADD45) can account for lethality in Drosophila lacking core NMD genes. Moreover, depletion of Gadd45 in mammalian cells rescues the cell survival defects associated with NMD knockdown. Our findings demonstrate that degradation of Gadd45 mRNA is the essential NMD function and, surprisingly, that the surveillance of abnormal mRNAs by this pathway is not necessarily required for viability. DOI: http://dx.doi.org/10.7554/eLife.12876.001


G3: Genes, Genomes, Genetics | 2014

In Vivo Determination of Direct Targets of the Nonsense Mediated Decay Pathway in Drosophila

Alex Chapin; Hao Hu; Shawn Rynearson; Julie Hollien; Mark Yandell; Mark M. Metzstein

Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a mRNA degradation pathway that regulates a significant portion of the transcriptome. The expression levels of numerous genes are known to be altered in NMD mutants, but it is not known which of these transcripts is a direct pathway target. Here, we present the first genome-wide analysis of direct NMD targeting in an intact animal. By using rapid reactivation of the NMD pathway in a Drosophila melanogaster NMD mutant and globally monitoring of changes in mRNA expression levels, we can distinguish between primary and secondary effects of NMD on gene expression. Using this procedure, we identified 168 candidate direct NMD targets in vivo. Remarkably, we found that 81% of direct target genes do not show increased expression levels in an NMD mutant, presumably due to feedback regulation. Because most previous studies have used up-regulation of mRNA expression as the only means to identify NMD-regulated transcripts, our results provide new directions for understanding the roles of the NMD pathway in endogenous gene regulation during animal development and physiology. For instance, we show clearly that direct target genes have longer 3′ untranslated regions compared with nontargets, suggesting long 3′ untranslated regions target mRNAs for NMD in vivo. In addition, we investigated the role of NMD in suppressing transcriptional noise and found that although the transposable element Copia is up-regulated in NMD mutants, this effect appears to be indirect.


Molecular Biology of the Cell | 2015

Ire1-mediated decay in mammalian cells relies on mRNA sequence, structure, and translational status

Kristin A. Moore; Julie Hollien

Endoplasmic reticulum (ER) stress induces the degradation of mRNAs by Ire1. In mammalian cells, this process depends on specific stem-loop structures in the target mRNAs and on Perk, a second sensor of ER stress. Perk appears to be required to translationally attenuate the stem-loop regions of target mRNAs.


ACS Chemical Biology | 2014

Fluorescent RNA Labeling Using Self-Alkylating Ribozymes

Ashwani K. Sharma; Joshua J. Plant; Alexandra E. Rangel; Kirsten N. Meek; April J. Anamisis; Julie Hollien; Jennifer M. Heemstra

The ability to fluorescently label specific RNA sequences is of significant utility for both in vitro and live cell applications. Currently, most RNA labeling methods utilize RNA-nucleic acid or RNA-protein molecular recognition. However, in the search for improved RNA labeling methods, harnessing the small-molecule recognition capabilities of RNA is rapidly emerging as a promising alternative. Along these lines, we propose a novel strategy in which a ribozyme acts to promote self-alkylation with a fluorophore, providing a robust, covalent linkage between the RNA and the fluorophore. Here we describe the selection and characterization of ribozymes that promote self-labeling with fluorescein iodoacetamide (FIA). Kinetic studies reveal a second-order rate constant that is on par with those of other reactions used for biomolecular labeling. Additionally, we demonstrate that labeling is specific to the ribozyme sequences, as FIA does not react nonspecifically with RNA.

Collaboration


Dive into the Julie Hollien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Marqusee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge