Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Jeukens is active.

Publication


Featured researches published by Julie Jeukens.


Philosophical Transactions of the Royal Society B | 2010

On the origin of species: insights from the ecological genomics of lake whitefish

Louis Bernatchez; Sébastien Renaut; Andrew R. Whiteley; Nicolas Derome; Julie Jeukens; Lysandre Landry; Guoqing Lu; Arne W. Nolte; Kjartan Østbye; Sean M. Rogers; Jérôme St-Cyr

In contrast to the large amount of ecological information supporting the role of natural selection as a main cause of population divergence and speciation, an understanding of the genomic basis underlying those processes is in its infancy. In this paper, we review the main findings of a long-term research programme that we have been conducting on the ecological genomics of sympatric forms of whitefish (Coregonus spp.) engaged in the process of speciation. We present this system as an example of how applying a combination of approaches under the conceptual framework of the theory of adaptive radiation has yielded substantial insight into evolutionary processes in a non-model species. We also discuss how the joint use of recent biotechnological developments will provide a powerful means to address issues raised by observations made to date. Namely, we present data illustrating the potential offered by combining next generation sequencing technologies with other genomic approaches to reveal the genomic bases of adaptive divergence and reproductive isolation. Given increasing access to these new genomic tools, we argue that non-model species studied in their ecological context such as whitefish will play an increasingly important role in generalizing knowledge of speciation.


Molecular Ecology | 2010

The transcriptomics of sympatric dwarf and normal lake whitefish (Coregonus clupeaformis spp., Salmonidae) divergence as revealed by next-generation sequencing

Julie Jeukens; Sébastien Renaut; Jérôme St-Cyr; Arne W. Nolte; Louis Bernatchez

Gene expression divergence is one of the mechanisms thought to be involved in the emergence of incipient species. Next‐generation sequencing has become an extremely valuable tool for the study of this process by allowing whole transcriptome sequencing, or RNA‐Seq. We have conducted a 454 GS‐FLX pyrosequencing experiment to refine our understanding of adaptive divergence between dwarf and normal lake whitefish species (Coregonus clupeaformis spp.). The objectives were to: (i) investigate transcriptomic divergence as measured by liver RNA‐Seq; (ii) test the correlation between divergence in expression and sequence polymorphism; and (iii) investigate the extent of allelic imbalance. We also compared the results of RNA‐seq with those of a previous microarray study performed on the same fish. Following de novo assembly, results showed that normal whitefish overexpressed more contigs associated with protein synthesis while dwarf fish overexpressed more contigs related to energy metabolism, immunity and DNA replication and repair. Moreover, 63 SNPs showed significant allelic imbalance, and this phenomenon prevailed in the recently diverged dwarf whitefish. Results also showed an absence of correlation between gene expression divergence as measured by RNA‐Seq and either polymorphism rate or sequence divergence between normal and dwarf whitefish. This study reiterates an important role for gene expression divergence, and provides evidence for allele‐specific expression divergence as well as evolutionary decoupling of regulatory and coding sequences in the adaptive divergence of normal and dwarf whitefish. It also demonstrates how next‐generation sequencing can lead to a more comprehensive understanding of transcriptomic divergence in a young species pair.


Genetics | 2008

The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp.)

Andrew R. Whiteley; Nicolas Derome; Sean M. Rogers; Jérôme St-Cyr; Jérôme Laroche; Aurélie Labbe; Arne W. Nolte; Sébastien Renaut; Julie Jeukens; Louis Bernatchez

We used microarrays and a previously established linkage map to localize the genetic determinants of brain gene expression for a backcross family of lake whitefish species pairs (Coregonus sp.). Our goals were to elucidate the genomic distribution and sex specificity of brain expression QTL (eQTL) and to determine the extent to which genes controlling transcriptional variation may underlie adaptive divergence in the recently evolved dwarf (limnetic) and normal (benthic) whitefish. We observed a sex bias in transcriptional genetic architecture, with more eQTL observed in males, as well as divergence in genome location of eQTL between the sexes. Hotspots of nonrandom aggregations of up to 32 eQTL in one location were observed. We identified candidate genes for species pair divergence involved with energetic metabolism, protein synthesis, and neural development on the basis of colocalization of eQTL for these genes with eight previously identified adaptive phenotypic QTL and four previously identified outlier loci from a genome scan in natural populations. Eighty-eight percent of eQTL-phenotypic QTL colocalization involved growth rate and condition factor QTL, two traits central to adaptive divergence between whitefish species pairs. Hotspots colocalized with phenotypic QTL in several cases, revealing possible locations where master regulatory genes, such as a zinc-finger protein in one case, control gene expression directly related to adaptive phenotypic divergence. We observed little evidence of colocalization of brain eQTL with behavioral QTL, which provides insight into the genes identified by behavioral QTL studies. These results extend to the transcriptome level previous work illustrating that selection has shaped recent parallel divergence between dwarf and normal lake whitefish species pairs and that metabolic, more than morphological, differences appear to play a key role in this divergence.


PLOS ONE | 2014

Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients.

Julie Jeukens; Brian Boyle; Irena Kukavica-Ibrulj; Myriam M. Ouellet; Shawn D. Aaron; Steve J. Charette; Joanne L. Fothergill; Nicholas P. Tucker; Craig Winstanley; Roger C. Levesque

Pseudomonas aeruginosa is the main cause of fatal chronic lung infections among individuals suffering from cystic fibrosis (CF). During the past 15 years, particularly aggressive strains transmitted among CF patients have been identified, initially in Europe and more recently in Canada. The aim of this study was to generate high-quality genome sequences for 7 isolates of the Liverpool epidemic strain (LES) from the United Kingdom and Canada representing different virulence characteristics in order to: (1) associate comparative genomics results with virulence factor variability and (2) identify genomic and/or phenotypic divergence between the two geographical locations. We performed phenotypic characterization of pyoverdine, pyocyanin, motility, biofilm formation, and proteolytic activity. We also assessed the degree of virulence using the Dictyostelium discoideum amoeba model. Comparative genomics analysis revealed at least one large deletion (40–50 kb) in 6 out of the 7 isolates compared to the reference genome of LESB58. These deletions correspond to prophages, which are known to increase the competitiveness of LESB58 in chronic lung infection. We also identified 308 non-synonymous polymorphisms, of which 28 were associated with virulence determinants and 52 with regulatory proteins. At the phenotypic level, isolates showed extensive variability in production of pyocyanin, pyoverdine, proteases and biofilm as well as in swimming motility, while being predominantly avirulent in the amoeba model. Isolates from the two continents were phylogenetically and phenotypically undistinguishable. Most regulatory mutations were isolate-specific and 29% of them were predicted to have high functional impact. Therefore, polymorphism in regulatory genes is likely to be an important basis for phenotypic diversity among LES isolates, which in turn might contribute to this strain’s adaptability to varying conditions in the CF lung.


Molecular Biology and Evolution | 2008

Candidate Genes and Adaptive Radiation: Insights from Transcriptional Adaptation to the Limnetic Niche among Coregonine Fishes (Coregonus spp., Salmonidae)

Julie Jeukens; David Bittner; Rune Knudsen; Louis Bernatchez

In the past 40 years, there has been increasing acceptance that variation in levels of gene expression represents a major source of evolutionary novelty. Gene expression divergence is therefore likely to be involved in the emergence of incipient species, namely, in a context of adaptive radiation. In the lake whitefish species complex (Coregonus clupeaformis), previous microarray experiments have led to the identification of candidate genes potentially implicated in the parallel evolution of the limnetic dwarf lake whitefish, which is highly distinct from the benthic normal lake whitefish in life history, morphology, metabolism, and behavior, and yet diverged from it only approximately 15,000 years before present. The aim of the present study was to address transcriptional divergence for six candidate genes among lake whitefish and European whitefish (Coregonus lavaretus) species pairs, as well as lake cisco (Coregonus artedi) and vendace (Coregonus albula). The main goal was to test the hypothesis that parallel phenotypic adaptation toward the use of the limnetic niche in coregonine fishes is accompanied by parallelism in candidate gene transcription as measured by quantitative real-time polymerase chain reaction. Results obtained for three candidate genes, whereby parallelism in expression was observed across all whitefish species pairs, provide strong support for the hypothesis that divergent natural selection plays an important role in the adaptive radiation of whitefish species. However, this parallelism in expression did not extend to cisco and vendace, thereby infirming transcriptional convergence between limnetic whitefish species and their limnetic congeners for these genes. As recently proposed (Lynch 2007a. The evolution of genetic networks by non-adaptive processes. Nat Rev Genet. 8:803-813), these results may suggest that convergent phenotypic evolution can result from nonadaptive shaping of genome architecture in independently evolved coregonine lineages.


Frontiers in Microbiology | 2015

Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

Luca Freschi; Julie Jeukens; Irena Kukavica-Ibrulj; Brian Boyle; Marie Josée Dupont; Jérôme Laroche; Stéphane Larose; Halim Maaroufi; Joanne L. Fothergill; Matthew Moore; Geoffrey L. Winsor; Shawn D. Aaron; Jean Barbeau; Scott C. Bell; Jane L. Burns; Miguel Cámara; André M. Cantin; Steve J. Charette; Ken Dewar; Eric Déziel; Keith Grimwood; Robert E. W. Hancock; Joe J. Harrison; Stephan Heeb; Lars Jelsbak; Baofeng Jia; D. Kenna; Timothy J. Kidd; Jens Klockgether; Joseph S. Lam

The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.


Fems Immunology and Medical Microbiology | 2014

Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny

Lewis Stewart; Amy Ford; Vartul Sangal; Julie Jeukens; Brian Boyle; Ir ena Kukavica-Ibrulj; Shabhonam Caim; Lisa Crossman; Paul A. Hoskisson; Roger C. Levesque; Nicholas P. Tucker

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen particularly associated with the inherited disease cystic fibrosis (CF). Pseudomonas aeruginosa is well known to have a large and adaptable genome that enables it to colonise a wide range of ecological niches. Here, we have used a comparative genomics approach to identify changes that occur during infection of the CF lung. We used the mucoid phenotype as an obvious marker of host adaptation and compared these genomes to analyse SNPs, indels and islands within near-isogenic pairs. To commence the correction of the natural bias towards clinical isolates in genomics studies and to widen our understanding of the genomic diversity of P. aeruginosa, we included four environmental isolates in our analysis. Our data suggest that genome plasticity plays an important role in chronic infection and that the strains sequenced in this study are representative of the two major phylogenetic groups as determined by core genome SNP analysis.


Genome Announcements | 2013

Complete Genome Sequence of Persistent Cystic Fibrosis Isolate Pseudomonas aeruginosa Strain RP73

Julie Jeukens; Brian Boyle; Irene Bianconi; Irena Kukavica-Ibrulj; Burkhard Tümmler; Alessandra Bragonzi; Roger C. Levesque

ABSTRACT Pseudomonas aeruginosa can establish lifelong chronic airway infections in cystic fibrosis (CF) patients. However, the genetic features associated with long-term persistence in the lung are not understood. We sequenced the genome of P. aeruginosa strain RP73, which was isolated after 16.9 years of chronic lung infection in a CF patient.


Frontiers in Microbiology | 2017

A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis

Jean Guillaume Emond-Rheault; Julie Jeukens; Luca Freschi; Irena Kukavica-Ibrulj; Brian Boyle; Marie Josée Dupont; Anna Colavecchio; Virginie Barrère; Brigitte Cadieux; Gitanjali Arya; Sadjia Bekal; Chrystal Berry; Elton Burnett; Camille Cavestri; Travis Chapin; Alanna Crouse; Michelle D. Danyluk; Pascal Delaquis; Ken Dewar; Florence Doualla-Bell; Ismail Fliss; Karen Fong; Eric Fournier; Eelco Franz; Rafael Garduno; Alexander Gill; Samantha Gruenheid; Linda J. Harris; Carol Huang; Hongsheng Huang

The Salmonella Syst-OMICS consortium is sequencing 4,500 Salmonella genomes and building an analysis pipeline for the study of Salmonella genome evolution, antibiotic resistance and virulence genes. Metadata, including phenotypic as well as genomic data, for isolates of the collection are provided through the Salmonella Foodborne Syst-OMICS database (SalFoS), at https://salfos.ibis.ulaval.ca/. Here, we present our strategy and the analysis of the first 3,377 genomes. Our data will be used to draw potential links between strains found in fresh produce, humans, animals and the environment. The ultimate goals are to understand how Salmonella evolves over time, improve the accuracy of diagnostic methods, develop control methods in the field, and identify prognostic markers for evidence-based decisions in epidemiology and surveillance.


Molecular Ecology Resources | 2011

BAC library construction, screening and clone sequencing of lake whitefish (Coregonus clupeaformis, Salmonidae) towards the elucidation of adaptive species divergence

Julie Jeukens; Brian Boyle; Irena Kukavica-Ibrulj; J. St-Cyr; Roger C. Levesque; Louis Bernatchez

Genomic DNA sequences and other genomic resources are essential towards the elucidation of the genomic bases of adaptive divergence and reproductive isolation. Here, we describe the construction, characterization and screening of a nonarrayed BAC library for lake whitefish (Coregonus clupeaformis). We then show how the combined use of BAC library screening and next‐generation sequencing can lead to efficient full‐length assembly of candidate genes. The lake whitefish BAC library consists of 181 050 clones derived from a single heterozygous fish. The mean insert size is 92 Kb, representing 5.2 haploid genome equivalents. Ten BAC clones were isolated following a quantitative real‐time PCR screening approach that targeted five previously identified candidate genes. Sequencing of these clones on a 454 GS FLX system yielded 178 000 reads with a mean length of 358 bp, for a total of 63.8 Mb. De novo assembly and annotation then allowed retrieval of contigs corresponding to each candidate gene, which also contained up‐ and/or downstream noncoding sequences. These results suggest that the lake whitefish BAC library combined with next‐generation sequencing technologies will be key resources to achieve a better understanding of both adaptive divergence and reproductive isolation in lake whitefish species pairs as well as salmonid evolution in general.

Collaboration


Dive into the Julie Jeukens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge