Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie L. Eiseman is active.

Publication


Featured researches published by Julie L. Eiseman.


Clinical Cancer Research | 2005

Phase I Pharmacokinetic-Pharmacodynamic Study of 17-(Allylamino)-17-Demethoxygeldanamycin (17AAG, NSC 330507), a Novel Inhibitor of Heat Shock Protein 90, in Patients with Refractory Advanced Cancers

Ramesh K. Ramanathan; Donald L. Trump; Julie L. Eiseman; Chandra P. Belani; Sanjiv S. Agarwala; Eleanor G. Zuhowski; Jing Lan; Douglas M. Potter; S. Percy Ivy; Sakkaraiappan Ramalingam; Adam Brufsky; Michael K.K. Wong; Susan Tutchko; Merrill J. Egorin

Purpose: 17-(Allylamino)-17-demethoxygeldanamycin (17AAG), a benzoquinone antibiotic, down-regulates oncoproteins by binding specifically to heat shock protein 90 (HSP90). We did a phase I study of 17AAG to establish the dose-limiting toxicity and maximum tolerated dose and to characterize 17AAG pharmacokinetics and pharmacodynamics. Experimental Design: Escalating doses of 17AAG were given i.v. over 1 or 2 hours on a weekly × 3 schedule every 4 weeks to cohorts of three to six patients. Plasma pharmacokinetics of 17AAG and 17-(amino)-17-demethoxygeldanamycin (17AG) were assessed by high-performance liquid chromatography. Expression of HSP70 and HSP90 in peripheral blood mononuclear cells was measured by Western blot. Results: Forty-five patients were enrolled to 11 dose levels between 10 and 395 mg/m2. The maximum tolerated dose was 295 mg/m2. Dose-limiting toxicity occurred in both patients (grade 3 pancreatitis and grade 3 fatigue) treated with 395 mg/m2. Common drug-related toxicities (grade 1 and 2) were fatigue, anorexia, diarrhea, nausea, and vomiting. Reversible elevations of liver enzymes occurred in 29.5% of patients. Hematologic toxicity was minimal. No objective responses were observed. 17AAG pharmacokinetics was linear. Peak plasma concentration and area under the curve of 17AG, the active major metabolite of 17AAG, increased with 17AAG dose, but the relationships were more variable than with 17AAG. 17AAG and 17AG in plasma were >90% protein bound. There were no consistent changes in peripheral blood mononuclear cell HSP90 or HSP70 content. Conclusions: 17AAG doses between 10 and 295 mg/m2 are well tolerated. 17AAG pharmacokinetics is linear. Peripheral blood mononuclear cell HSP90 and HSP70 are uninformative pharmacodynamic markers. The dose recommended for future studies is 295 mg/m2 weekly × 3, repeated every 4 weeks.


Clinical Cancer Research | 2007

Phase I and Pharmacodynamic Study of 17-(Allylamino)-17-Demethoxygeldanamycin in Adult Patients with Refractory Advanced Cancers

Ramesh K. Ramanathan; Merrill J. Egorin; Julie L. Eiseman; Suresh Ramalingam; David M. Friedland; Sanjiv S. Agarwala; S. Percy Ivy; Douglas M. Potter; Gurkamal S. Chatta; Eleanor G. Zuhowski; Ronald G. Stoller; Cynthia Naret; Jianxia Guo; Chandra P. Belani

Purpose: The primary objective was to establish the dose-limiting toxicity (DLT) and recommended phase II dose of 17-(allylamino)-17-demethoxygeldanamycin (17AAG) given twice a week. Experimental Design: Escalating doses of 17AAG were given i.v. to cohorts of three to six patients. Dose levels for schedule A (twice weekly × 3 weeks, every 4 weeks) were 100, 125, 150, 175, and 200 mg/m2 and for schedule B (twice weekly × 2 weeks, every 3 weeks) were 150, 200, and 250 mg/m2. Peripheral blood mononuclear cells (PBMC) were collected for assessment of heat shock protein (HSP) 90 and HSP90 client proteins. Results: Forty-four patients were enrolled, 32 on schedule A and 12 on schedule B. On schedule A at 200 mg/m2, DLTs were seen in two of six patients (one grade 3 thrombocytopenia and one grade 3 abdominal pain). On schedule B, both patients treated at 250 mg/m2 developed DLT (grade 3 headache with nausea/vomiting). Grade 3/4 toxicities seen in >5% of patients were reversible elevations of liver enzymes (47%), nausea (9%), vomiting (9%), and headache (5%). No objective tumor responses were observed. The only consistent change in PBMC proteins monitored was a 0.8- to 30-fold increase in HSP70 concentrations, but these were not dose dependent. The increase in PBMC HSP70 persisted throughout the entire cycle of treatment but returned to baseline between last 17AAG dose of cycle 1 and first 17AAG dose of cycle 2. Conclusions: The recommended phase II doses of 17AAG are 175 to 200 mg/m2 when given twice a week and consistently cause elevations in PBMC HSP70.


Clinical Cancer Research | 2005

Plasma Pharmacokinetics, Oral Bioavailability, and Interspecies Scaling of the DNA Methyltransferase Inhibitor, Zebularine

Julianne L. Holleran; Robert A. Parise; Erin Joseph; Julie L. Eiseman; Joseph M. Covey; Elizabeth R. Glaze; Alexander V. Lyubimov; Ya Fei Chen; David Z. D'Argenio; Merrill J. Egorin

Purpose: Zebularine is a DNA methyltransferase inhibitor proposed for clinical evaluation. Experimental Design: We developed a liquid chromatography/mass spectrometry assay and did i.v. and oral studies in mice, rats, and rhesus monkeys. Results: In mice, plasma zebularine concentrations declined with terminal half-lives (t1/2) of 40 and 91 minutes after 100 mg/kg i.v. and 1,000 mg/kg given orally, respectively. Zebularine plasma concentration versus time curves (area under the curve) after 100 mg/kg i.v. and 1,000 mg/kg given orally were 7,323 and 4,935 μg/mL min, respectively, corresponding to a total body clearance (CLtb) of 13.65 mL/min/kg, apparent total body clearance (CLapp) of 203 mL/min/kg, and oral bioavailability of 6.7%. In rats, plasma zebularine concentrations declined with t1/2 of 363, 110, and 126 minutes after 50 mg/kg i.v., 250 mg/kg given orally, and 500 mg/kg given orally, respectively. Zebularine areas under the curve after 50 mg/kg i.v., 250 mg/kg given orally, and 500 mg/kg given orally were 12,526, 1,969, and 7,612 μg/mL min, respectively, corresponding to a CLtb of 3.99 mL/min/kg for 50 mg/kg i.v. and CLapp of 127 and 66 mL/min/kg for 250 and 500 mg/kg given orally, respectively. Bioavailabilities of 3.1% and 6.1% were calculated for the 250 and 500 mg/kg oral doses, respectively. In monkeys, zebularine t1/2 was 70 and 150 minutes, CLtb was 3.55 and 10.85 mL/min/kg after i.v. administration, and CLapp was 886 and 39,572 mL/min/kg after oral administration of 500 and 1,000 mg/kg, respectively. Zebularine oral bioavailability was <1% in monkeys. Interspecies scaling produced the following relationship: CLtb = 6.46(weight0.9). Conclusions: Zebularine has limited oral bioavailability. Interspecies scaling projects a CLtb of 296 mL/min in humans.


Cancer Chemotherapy and Pharmacology | 2009

Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc–Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice

Jianxia Guo; Robert A. Parise; Erin Joseph; Merrill J. Egorin; John S. Lazo; Edward V. Prochownik; Julie L. Eiseman

Objectivesc-Myc is commonly activated in many human tumors and is functionally important in cellular proliferation, differentiation, apoptosis and cell cycle progression. The activity of c-Myc requires noncovalent interaction with its client protein Max. In vitro studies indicate the thioxothiazolidinone, 10058-F4, inhibits c-Myc/Max dimerization. In this study, we report the efficacy, pharmacokinetics and metabolism of this novel protein–protein disruptor in mice.MethodsSCID mice bearing DU145 or PC-3 human prostate cancer xenografts were treated with either 20 or 30 mg/kg 10058-F4 on a qdx5 schedule for 2 weeks for efficacy studies. For pharmacokinetics and metabolism studies, mice bearing PC-3 or DU145 xenografts were treated with 20 mg/kg of 10058-F4 i.v. Plasma and tissues were collected 5–1440 min after dosing. The concentration of 10058-F4 in plasma and tissues was determined by HPLC, and metabolites were characterized by LC-MS/MS.ResultsFollowing a single iv dose, peak plasma 10058-F4 concentrations of approximately 300 μM were seen at 5 min and declined to below the detection limit at 360 min. Plasma concentration versus time data were best approximated by a two-compartment, open, linear model. The highest tissue concentrations of 10058-F4 were found in fat, lung, liver, and kidney. Peak tumor concentrations of 10058-F4 were at least tenfold lower than peak plasma concentrations. Eight metabolites of 10058-F4 were identified in plasma, liver, and kidney. The terminal half-life of 10058-F4 was approximately 1 h, and the volume of distribution was >200 ml/kg. No significant inhibition of tumor growth was seen after i.v. treatment of mice with either 20 or 30 mg/kg 10058-F4.ConclusionThe lack of significant antitumor activity of 10058-F4 in tumor-bearing mice may have resulted from its rapid metabolism and low concentration in tumors.


Clinical Cancer Research | 2007

Plasma, Tumor, and Tissue Disposition of STEALTH Liposomal CKD-602 (S-CKD602) and Nonliposomal CKD-602 in Mice Bearing A375 Human Melanoma Xenografts

William C. Zamboni; Sandra Strychor; Erin Joseph; Dustin R. Walsh; Beth A. Zamboni; Robert A. Parise; Margaret Tonda; Ning Y. Yu; Charles Engbers; Julie L. Eiseman

Purpose: S-CKD602 is a STEALTH liposomal formulation of CKD-602, a camptothecin analogue. The cytotoxicity of camptothecin analogues is related to the duration of exposure in the tumor. STEALTH liposomal formulations contain lipid conjugated to methoxypolyethylene glycol and have been designed to prolong drug circulation time, increase tumor delivery, and improve the therapeutic index. For STEALTH liposomal formulations of anticancer agents to achieve antitumor effects, the active drug must be released into the tumor extracellular fluid (ECF). Experimental Design: S-CKD602 at 1 mg/kg or nonliposomal CKD-602 at 30 mg/kg was administered once via tail vein to mice bearing A375 human melanoma xenografts. Mice (n = 3 per time point) were euthanized at 0.083 to 24 h, 48 h, and 72 h after S-CKD02 and from 0.083 to 24 h after nonliposomal CKD-602. Plasma samples were processed to measure encapsulated, released, and sum total (encapsulated plus released) CKD-602, and tumor and tissue samples were processed to measure sum total CKD-602. Microdialysis samples of tumor ECF were obtained from 0 to 2 h, 4 to 7 h, and 20 to 24 h after nonliposomal CKD-602 and from 0 to 2 h, 24 to 27 h, 48 to 51 h, and 72 to 75 h after S-CKD602. A liquid chromatography-mass spectrometry assay was used to measure the total (sum of lactone and hydroxyl acid) CKD-602. The area under the concentration-versus-time curves (AUC) from 0 to infinity and time >1 ng/mL in tumor were estimated. Results: For S-CKD602, the CKD-602 sum total AUC in plasma and tumor and the CKD-602 AUC in tumor ECF were 201,929, 13,194, and 187 ng/mL h, respectively. For S-CKD602, 82% of CKD-602 remains encapsulated in plasma. For nonliposomal CKD-602, the CKD-602 AUC in plasma and tumor and the CKD-602 AUC in tumor ECF were 9,117, 11,661, and 639 ng/mL·h, respectively. The duration of time the CKD-602 concentration was >1 ng/mL in tumor ECF after S-CKD602 and nonliposomal CKD-602 was >72 and ∼20 h, respectively. For S-CKD602, the CKD-602 sum total exposure was 1.3-fold higher in fat as compared with muscle. The ratio of CKD-602 sum total exposure in fat to muscle was 3.8-fold higher after administration of S-CKD602 compared with nonliposomal CKD-602. Conclusion: S-CKD602 provides pharmacokinetic advantages in plasma, tumor, and tumor ECF compared with nonliposomal CKD-602 at 1/30th of the dose, which is consistent with the improved antitumor efficacy of S-CKD602 in preclinical studies. The distribution of S-CKD602 is greater in fat compared with muscle whereas the distribution of nonliposomal CKD-602 is greater in muscle compared with fat. These results suggest that the body composition of a patient may affect the disposition of S-CKD602 and released CKD-602.


Journal of Pharmacology and Experimental Therapeutics | 2010

In Vitro Cytotoxicity and In Vivo Efficacy, Pharmacokinetics, and Metabolism of 10074-G5, a Novel Small-Molecule Inhibitor of c-Myc/Max Dimerization

Dana M. Clausen; Jianxia Guo; Robert A. Parise; Jan H. Beumer; Merrill J. Egorin; John S. Lazo; Edward V. Prochownik; Julie L. Eiseman

The c-Myc oncoprotein is overexpressed in many tumors and is essential for maintaining the proliferation of transformed cells. To function as a transcription factor, c-Myc must dimerize with Max via the basic helix-loop-helix leucine zipper protein (bHLH-ZIP) domains in each protein. The small molecule 7-nitro-N-(2-phenylphenyl)-2,1,3-benzoxadiazol-4-amine (10074-G5) binds to and distorts the bHLH-ZIP domain of c-Myc, thereby inhibiting c-Myc/Max heterodimer formation and inhibiting its transcriptional activity. We report in vitro cytotoxicity and in vivo efficacy, pharmacodynamics, pharmacokinetics, and metabolism of 10074-G5 in human xenograft-bearing mice. In vitro, 10074-G5 inhibited the growth of Daudi Burkitts lymphoma cells and disrupted c-Myc/Max dimerization. 10074-G5 had no effect on the growth of Daudi xenografts in C.B-17 SCID mice that were treated with 20 mg/kg 10074-G5 intravenously for 5 consecutive days. Inhibition of c-Myc/Max dimerization in Daudi xenografts was not seen 2 or 24 h after treatment. Concentrations of 10074-G5 in various matrices were determined by high-performance liquid chromatography-UV, and metabolites of 10074-G5 were identified by liquid chromatography/tandem mass spectrometry. The plasma half-life of 10074-G5 in mice treated with 20 mg/kg i.v. was 37 min, and peak plasma concentration was 58 μM, which was 10-fold higher than peak tumor concentration. The lack of antitumor activity probably was caused by the rapid metabolism of 10074-G5 to inactive metabolites, resulting in tumor concentrations of 10074-G5 insufficient to inhibit c-Myc/Max dimerization. Our identification of 10074-G5 metabolites in mice will help design new, more metabolically stable small-molecule inhibitors of c-Myc.


Clinical Cancer Research | 2006

Pharmacokinetics, metabolism, and oral bioavailability of the DNA methyltransferase inhibitor 5-fluoro-2'-deoxycytidine in mice.

Jan H. Beumer; Julie L. Eiseman; Robert A. Parise; Erin Joseph; Julianne L. Holleran; Joseph M. Covey; Merrill J. Egorin

Purpose:In vivo, 5-fluoro-2′-deoxycytidine (FdCyd) is rapidly and sequentially converted to 5-fluoro-2′-deoxyuridine, 5-fluorouracil, and 5-fluorouridine. The i.v. combination of FdCyd and 3,4,5,6-tetrahydrouridine (THU), a cytidine deaminase (CD) inhibitor that blocks the first metabolic step in FdCyd catabolism, is being investigated clinically for its ability to inhibit DNA methyltransferase. However, the full effects of THU on FdCyd metabolism and pharmacokinetics are unknown. We aimed to characterize the pharmacokinetics, metabolism, and bioavailability of FdCyd with and without THU in mice. Experimental Design: We developed a sensitive high-performance liquid chromatography tandem mass spectrometry assay to quantitate FdCyd and metabolites in mouse plasma. Mice were dosed i.v. or p.o. with 25 mg/kg FdCyd with or without coadministration of 100 mg/kg THU p.o. or i.v. Results: The oral bioavailability of FdCyd alone was ∼4%. Coadministration with THU increased exposure to FdCyd and decreased exposure to its metabolites; i.v. and p.o. coadministration of THU increased exposure to p.o. FdCyd by 87- and 58-fold, respectively. FdCyd exposure after p.o. FdCyd with p.o. THU was as much as 54% that of i.v. FdCyd with i.v. THU. Conclusions: FdCyd is well absorbed but undergoes substantial first-pass catabolism by CD to potentially toxic metabolites that do not inhibit DNA methyltransferase. THU is sufficiently bioavailable to reduce the first-pass effect of CD on FdCyd. Oral coadministration of THU and FdCyd is a promising approach that warrants clinical testing because it may allow maintaining effective FdCyd concentrations on a chronic basis, which would be an advantage over other DNA methyltransferase inhibitors that are currently approved or in development.


Journal of Pharmacokinetics and Pharmacodynamics | 2003

Physiologically-based pharmacokinetics and molecular pharmacodynamics of 17-(allylamino)-17-demethoxygeldanamycin and its active metabolite in tumor-bearing mice.

Lu Xu; Julie L. Eiseman; Merrill J. Egorin; David Z. D'Argenio

A whole-body physiologically-based model was developed to describe the pharmacokinetics of the ansamycin benzoquinone antibiotic 17-(allylamino)-17-demethoxygeldanamycin (17AAG) and its active metabolite 17-(amino)-17-demethoxygeldanamycin (17AG) in blood, normal organs (lung, brain, heart, spleen, liver, kidney, skeletal muscle) and implanted human tumor xenograft in nude mice. The distribution of 17AAG in all organs was described by diffusion-limited exchange models, while that of 17AG was described by perfusion-limited models. The intrinsic clearances of 17AAG and 17AG in the liver were uniquely identified using local models and were estimated to be 4.93 ml/hr and 3.34 ml/hr. It was also estimated that the formation of 17AG in liver accounted for 40% of the 17AAG intrinsic clearance. The model for the distribution of both 17AAG and 17AG in the human breast cancer tumor xenograft included vascular, interstitial and intracellular compartments, which yielded the predicted cellular concentrations of 17AAG and 17AG two to three times higher than the corresponding whole tissue measurements at steady state. Estimates of the vascular-interstitial permeability surface-area product were similar for 17AAG and 17AG (0.23 ml/hr and 0.26 ml/hr). However, the interstitial to cellular transport rate of 17AG was three-fold greater than that of 17AAG, which resulted in the preferential uptake of 17AG over 17AAG in tumor. Indirect response models were developed to describe the combined action of 17AAG and 17AG on the onco-proteins Raf-1 and p185erbB2 in tumor. The half-life of endogenous protein turnover was estimated to be 22.6 hr for Raf-1 and 8.6 hr for p185erbB2, and both were comparable to corresponding values measured in vitro. A model for the molecular chaperon heat shock proteins HSP70 and HSP90 was developed based on the molecular mechanism of heat shock auto-regulation and the action of 17AAG and 17AG on these proteins. The model provided in vivo estimates of endogenous HSP70 and HSP90 turnover. In modeling pharmacokinetics and pharmacodynamics, Bayesian inference was employed to estimate the kinetic, physiological and molecular parameters when prior information was available.


Molecular Pharmaceutics | 2013

A Cell-Targeted Photodynamic Nanomedicine Strategy for Head and Neck Cancers

Alyssa M. Master; Anthony S. Malamas; Rachna Solanki; Dana M. Clausen; Julie L. Eiseman; Anirban Sen Gupta

Photodynamic therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intratumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise toward a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas.


Clinical Cancer Research | 2008

Modulation of Gemcitabine (2′,2′-Difluoro-2′-Deoxycytidine) Pharmacokinetics, Metabolism, and Bioavailability in Mice by 3,4,5,6-Tetrahydrouridine

Jan H. Beumer; Julie L. Eiseman; Robert A. Parise; Erin Joseph; Joseph M. Covey; Merrill J. Egorin

Purpose:In vivo, 2′,2′-difluoro-2′-deoxycytidine (dFdC) is rapidly inactivated by gut and liver cytidine deaminase (CD) to 2′,2′-difluoro-2′-deoxyuridine (dFdU). Consequently, dFdC has poor oral bioavailability and is administered i.v., with associated costs and limitations in administration schedules. 3,4,5,6-Tetrahydrouridine (THU) is a potent CD inhibitor with a 20% oral bioavailability. We investigated the ability of THU to decrease elimination and first-pass effect by CD, thereby enabling oral dosing of dFdC. Experimental Design: A liquid chromatography-tandem mass spectrometry assay was developed for plasma dFdC and dFdU. Mice were dosed with 100 mg/kg dFdC i.v. or orally with or without 100 mg/kg THU i.v. or orally. At specified times between 5 and 1,440 min, mice (n = 3) were euthanized. dFdC, dFdU, and THU concentrations were quantitated in plasma and urine. Results: THU i.v. and orally produced concentrations >4 μg/mL for 3 and 2 h, respectively, whereas concentrations of >1 μg/mL have been associated with near-complete inhibition of CD in vitro. THU i.v. decreased plasma dFdU concentrations but had no effect on dFdC plasma area under the plasma concentration versus time curve after i.v. dFdC dosing. Both THU i.v. and orally substantially increased oral bioavailability of dFdC. Absorption of dFdC orally was 59%, but only 10% passed liver and gut CD and eventually reached the systemic circulation. Coadministration of THU orally increased dFdC oral bioavailability from 10% to 40%. Conclusions: Coadministration of THU enables oral dosing of dFdC and warrants clinical testing. Oral dFdC treatment would be easier and cheaper, potentially prolong dFdC exposure, and enable exploration of administration schedules considered impractical by the i.v. route.

Collaboration


Dive into the Julie L. Eiseman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan H. Beumer

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin Joseph

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianxia Guo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Zamboni

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge