Julie Leloup
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Leloup.
PLOS ONE | 2015
Imen Louati; Noémie Pascault; Didier Debroas; Cécile Bernard; Jean-François Humbert; Julie Leloup
The factors and processes driving cyanobacterial blooms in eutrophic freshwater ecosystems have been extensively studied in the past decade. A growing number of these studies concern the direct or indirect interactions between cyanobacteria and heterotrophic bacteria. The presence of bacteria that are directly attached or immediately adjacent to cyanobacterial cells suggests that intense nutrient exchanges occur between these microorganisms. In order to determine if there is a specific association between cyanobacteria and bacteria, we compared the bacterial community composition during two cyanobacteria blooms of Anabaena (filamentous and N2-fixing) and Microcystis (colonial and non-N2 fixing) that occurred successively within the same lake. Using high-throughput sequencing, we revealed a clear distinction between associated and free-living communities and between cyanobacterial genera. The interactions between cyanobacteria and bacteria appeared to be based on dissolved organic matter degradation and on N recycling, both for N2-fixing and non N2-fixing cyanobacteria. Thus, the genus and potentially the species of cyanobacteria and its metabolic capacities appeared to select for the bacterial community in the phycosphere.
FEMS Microbiology Ecology | 2013
Léo Simon Ruamps; Naoise Nunan; Valérie Pouteau; Julie Leloup; Xavier Raynaud; Virginie Roy; Claire Chenu
Little is known about the factors that regulate C mineralisation at the soil pore scale or how these factors vary throughout the pore network. This study sought to understand how the decomposition of organic carbon varies within the soil pore network and to determine the relative importance of local environmental properties relative to biological properties as controlling factors. This was achieved by sterilising samples of soil and reinoculating them with axenic bacterial suspensions using the matric potential to target different locations in the pore network. Carbon mineralisation curves were described with two-compartment first-order models to distinguish CO2 derived from the labile organic carbon released during sterilisation from CO2 derived from organic C unaffected by sterilisation. The data indicated that the size of the labile pool of organic C, possibly of microbial origin, varied as a function of location in the pore network but that the organic carbon unaffected by sterilisation did not. The mineralisation rate of the labile C varied with the bacterial type inoculated, but the mineralisation rate of the organic C unaffected by sterilisation was insensitive to bacterial type. Taken together, the results suggest that microbial metabolism is a less significant regulator of soil organic carbon decomposition than are microbial habitat properties.
FEMS Microbiology Ecology | 2014
Noémie Pascault; Simon Roux; Joan Artigas; Stéphane Pesce; Julie Leloup; Rémy D. Tadonléké; Didier Debroas; Agnès Bouchez; Jean-François Humbert
The pollution of lakes and rivers by pesticides is a growing problem worldwide. However, the impacts of these substances on microbial communities are still poorly understood, partly because next-generation sequencing (NGS) has rarely been used in an ecotoxicology context to study bacterial communities despite its interest for accessing rare taxa. Microcosm experiments were carried out to evaluate the effects of tebuconazole (TBZ) on the structure and composition of bacterial communities from two types of freshwater ecosystem (lakes and rivers) with differing histories of pollutant contamination (pristine vs. previously exposed sites). Pyrosequencing revealed that bacterial diversity was higher in the river than in the lakes and in previously exposed sites than in pristine sites. Lakes and river stations shared very few OTUs, and differences at the phylum level were identified between these ecosystems (i.e. the relative importance of Actinobacteria and Gammaproteobacteria). Despite differences between these ecosystems and their contamination history, no significant effect of TBZ on bacterial community structure or composition was observed. Compared to functional parameters that displayed variable responses, we demonstrated that a combination of classical methods and NGS is necessary to investigate the ecotoxicological responses of microbial communities to pollutants.
Frontiers in Microbiology | 2016
Lin Zhu; Anouk Zancarini; Imen Louati; Silvia De Cesare; Charlotte Duval; Kevin Tambosco; Cécile Bernard; Didier Debroas; Lirong Song; Julie Leloup; Jean-François Humbert
To overcome the limitations associated with studying the interactions between bacterial communities (BCs) and cyanobacteria in natural environments, we compared the structural and functional diversities of the BCs associated with 15 non-axenic cyanobacterial strains in culture and two natural BCs sampled during cyanobacterial blooms. No significant differences in richness and diversity were found between the natural and cultivated BCs, although some of the cyanobacterial strains had been isolated 11 years earlier. Moreover, these BCs shared some similar characteristics, such as a very low abundance of Actinobacteria, but they display significant differences at the operational taxonomic unit (OTU) level. Overall, our findings suggest that BCs associated with cyanobacteria in culture are good models to better understand the interactions between heterotrophic bacteria and cyanobacteria. Additionally, BCs associated with heterocystous cyanobacterial strains cultivated in Z8X culture medium without nitrate (Aphanizomenon–Dolichospermum) demonstrated significant differences compared to BCs associated with non-heterocystous strains cultivated in Z8 culture medium (Planktothrix–Microcystis) in terms of their composition and their ability to utilize different carbon sources, suggesting the potential influence of cyanobacterial metabolism and/or culture media on associated BCs. Finally, half of the dominant OTUs in these BCs were specifically associated with cyanobacteria or other phytoplankton, whereas the remaining OTUs were generally associated with ecosystems containing high organic matter content, such as sludge or intestines.
Science of The Total Environment | 2014
Joan Artigas; N. Pascault; Agnès Bouchez; J. Chastaine; Didier Debroas; Jean-François Humbert; Julie Leloup; Rémy D. Tadonléké; A. Ter Halle; Stéphane Pesce
Stream and lake ecosystems in agricultural watersheds are exposed to fungicide inputs that can threaten the structure and functioning of aquatic microbial communities. This research analyzes the impact of the triazole fungicide tebuconazole (TBZ) on natural biofilm and plankton microbial communities from sites presenting different degrees of agricultural contamination. Biofilm and plankton communities from less-polluted (LP) and polluted (P) sites were exposed to nominal concentrations of 0 (control), 2 and 20 μg TBZ L(-1) in 3-week microcosm experiments. Descriptors of microbial community structure (bacterial density and chlorophyll-a concentration) and function (bacterial respiration and production and photosynthesis) were analyzed to chart the effects of TBZ and the kinetics of TBZ attenuation in water during the experiments. The results showed TBZ-induced effects on biofilm function (inhibition of substrate-induced respiration and photosynthetic activity), especially in LP-site communities, whereas plankton communities experienced a transitory stimulation of bacterial densities in communities from both LP and P sites. TBZ attenuation was stronger in biofilm (60-75%) than plankton (15-18%) experiments, probably due to greater adsorption on biofilms. The differences between biofilm and plankton responses to TBZ were likely explained by differences in community structure (presence of extracellular polymeric substances (EPS) matrix) and microbial composition. Biofilm communities also exhibited different sensitivity levels according to their in-field pre-exposure to fungicide, with P-site communities demonstrating adaptation capacities to TBZ. This study indicates that TBZ toxicity to non-targeted aquatic microbial communities essentially composed by microalgae and bacteria was moderate, and that its effects varied between stream and lake microbial communities.
Scientific Reports | 2017
Naoise Nunan; Julie Leloup; Léo S. Ruamps; Valérie Pouteau; Claire Chenu
An underlying assumption of most soil carbon (C) dynamics models is that soil microbial communities are functionally similar; in other words, that microbial activity under given conditions is not dependent on the composition or diversity of the communities. Although a number of studies have indicated that microbial communities are not intrinsically functionally similar, most soil C dynamics models can adequately describe C dynamics without explicitly describing microbial functioning. Here, we provide a mechanistic basis for reconciling this apparent discrepancy. In a reciprocal transplant experiment, we show that the environmental context (soil and pore-network properties) of microbial communities can constrain the activity of functionally different communities to such an extent that their activities are indistinguishable. The data also suggest that when microbial activity is less constrained, the intrinsic functional differences among communities can be expressed. We conclude that soil C dynamics may depend on microbial community structure or diversity in environments where their activity is less constrained, such as the rhizosphere or the litter layer, but not in oligotrophic environments such as the mineral layers of soil.
Scientific Reports | 2018
Naoise Nunan; Julie Leloup; Léo S. Ruamps; Valérie Pouteau; Claire Chenu
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
La Météorologie | 2016
Marion Saint-Lu; Julie Leloup
EnglishEl Nino is a complex climatic phenomenon. Despite its multiple aspects, its existence is well explained and its physics well-documented. For a few decades, the theory related to El Nino has been built and expanded as mechanisms are suggested, debated and further complemented. Here we present an up-to-date synthesis. francaisEl Nino est un phenomene climatique complexe. Malgre ses multiples facettes, son existence est bien expliquee et son fonctionnement bien documente. Depuis plusieurs decennies, la theorie relative a El Nino se constitue a mesure que les mecanismes en jeu sont mis en evidence, debattus et completes. Nous en proposons ici une synthese actualisee.
Climate Dynamics | 2014
Hugo Bellenger; Eric Guilyardi; Julie Leloup; Matthieu Lengaigne; Jérôme Vialard
Climate Dynamics | 2006
Julie Leloup; Zouhair Lachkar; Jean-Philippe Boulanger; Sylvie Thiria