Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie M. Bailis is active.

Publication


Featured researches published by Julie M. Bailis.


Molecular and Cellular Biology | 2005

ATM Activation and Its Recruitment to Damaged DNA Require Binding to the C Terminus of Nbs1

Zhongsheng You; Charly Chahwan; Julie M. Bailis; Tony Hunter; Paul Russell

ABSTRACT ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-β. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.


Trends in Cell Biology | 2010

DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints

Zhongsheng You; Julie M. Bailis

Maintenance of genome stability depends on efficient, accurate repair of DNA damage. DNA double-strand breaks (DSBs) are among the most lethal types of DNA damage, with the potential to cause mutation, chromosomal rearrangement, and genomic instability that could contribute to cancer. DSB damage can be repaired by various pathways including nonhomologous end-joining (NHEJ) and homologous recombination (HR). However, the cellular mechanisms that regulate the choice of repair pathway are not well understood. Recent studies suggest that the tumor suppressor protein CtIP controls the decision to repair DSB damage by HR. It does so by regulating the initiation of DSB end resection after integrating signals from the DNA damage checkpoint response and cell cycle cues.


Nature Cell Biology | 2003

Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres

Julie M. Bailis; Pascal Bernard; Richard Antonelli; Robin C. Allshire; Susan L. Forsburg

Heterochromatin performs a central role in chromosome segregation and stability by promoting cohesion at centromeres. Establishment of both heterochromatin-mediated silencing and cohesion requires passage through S phase, although the mechanism is unknown. Here we demonstrate that Schizosaccharomyces pombe Hsk1 (CDC7), a conserved Dbf4-dependent protein kinase (DDK) that regulates replication initiation, interacts with and phosphorylates the heterochromatin protein 1 (HP1) equivalent Swi6 (ref. 6). Hsk1 and its regulatory subunit Dfp1 function downstream of Swi6 localization to promote heterochromatin function and cohesion specifically at centromeres. This role for Hsk1–Dfp1 is separable from its replication initiation activity, providing a temporal link between S phase and centromere cohesion that is mediated by heterochromatin.


Nature Cell Biology | 2007

Rapid activation of ATM on DNA flanking double-strand breaks

Zhongsheng You; Julie M. Bailis; Sam A. Johnson; Stephen M. Dilworth; Tony Hunter

The tumour-suppressor gene ATM, mutations in which cause the human genetic disease ataxia telangiectasia (A-T), encodes a key protein kinase that controls the cellular response to DNA double-strand breaks (DSBs). DNA DSBs caused by ionizing radiation or chemicals result in rapid ATM autophosphorylation, leading to checkpoint activation and phosphorylation of substrates that regulate cell-cycle progression, DNA repair, transcription and cell death. However, the precise mechanism by which damaged DNA induces ATM and checkpoint activation remains unclear. Here, we demonstrate that linear DNA fragments added to Xenopus egg extracts mimic DSBs in genomic DNA and provide a platform for ATM autophosphorylation and activation. ATM autophosphorylation and phosphorylation of its substrate NBS1 are dependent on DNA fragment length and the concentration of DNA ends. The minimal DNA length required for efficient ATM autophosphorylation is ∼200 base pairs, with cooperative autophosphorylation induced by DNA fragments of at least 400 base pairs. Importantly, full ATM activation requires it to bind to DNA regions flanking DSB ends. These findings reveal a direct role for DNA flanking DSB ends in ATM activation.


Molecular and Cellular Biology | 2008

Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability.

Julie M. Bailis; Douglas D. Luche; Tony Hunter; Susan L. Forsburg

ABSTRACT The minichromosome maintenance (MCM) complex plays essential, conserved roles throughout DNA synthesis: first, as a component of the prereplication complex at origins and, then, as a helicase associated with replication forks. Here we use fission yeast (Schizosaccharomyces pombe) as a model to demonstrate a role for the MCM complex in protecting replication fork structure and promoting recovery from replication arrest. Loss of MCM function generates lethal double-strand breaks at sites of DNA synthesis during replication elongation, suggesting replication fork collapse. MCM function also maintains the stability of forks stalled by hydroxyurea that activate the replication checkpoint. In cells where the checkpoint is activated, Mcm4 binds the Cds1 kinase and undergoes Cds1-dependent phosphorylation. MCM proteins also interact with proteins involved in homologous recombination, which promotes recovery from arrest by ensuring normal mitosis. We suggest that the MCM complex links replication fork stabilization with checkpoint arrest and recovery through direct interactions with checkpoint and recombination proteins and that this role in S-phase genome stability is conserved from yeast to human cells.


Molecular and Cellular Biology | 2005

Suppressors of Bir1p (Survivin) Identify Roles for the Chromosomal Passenger Protein Pic1p (INCENP) and the Replication Initiation Factor Psf2p in Chromosome Segregation

Han-kuei Huang; Julie M. Bailis; Joel D. Leverson; Eliana B. Gómez; Susan L. Forsburg; Tony Hunter

ABSTRACT Fission yeast Bir1p/Cut17p/Pbh1p, the homolog of human Survivin, is a conserved chromosomal passenger protein that is required for cell division and cytokinesis. To study how Bir1p promotes accurate segregation of chromosomes, we generated and analyzed a temperature-sensitive allele, bir1-46, and carried out genetic screens to find genes that interact with bir1 + . We identified Psf2p, a component of the GINS complex required for DNA replication initiation, as a high-copy-number suppressor of the bir1-46 growth defect. Loss of Psf2p function by depletion or deletion or by use of a temperature-sensitive allele, psf2-209, resulted in chromosome missegregation that was associated with mislocalization of Bir1p. We also found that the human homolog of Psf2p, PSF2, was required for proper chromosome segregation. In addition, we observed that high-copy-number expression of Pic1p, the fission yeast homolog of INCENP (inner centromere protein), suppressed bir1-46. Pic1p exhibited a localization pattern typical of chromosomal passenger proteins. Deletion of pic1 + caused chromosome missegregation phenotypes similar to those of bir1-46. Our data suggest that Bir1p and Pic1p act as part of a conserved chromosomal passenger complex and that Psf2p/GINS indirectly affects the localization and function of this complex in chromosome segregation, perhaps through an S-phase role in centromere replication.


Cell Cycle | 2004

S Phase Assembly of Centromeric Heterochromatin and Cohesion

Julie M. Bailis; Susan L. Forsburg

Accurate chromosome segregation in mitosis requires cohesion between sister centromeres mediated by heterochromatin. Although establishment of both silent heterochromatin and cohesion require passage through S phase, the mechanism was previously unknown. In our recent paper, we demonstrate that heterochromatin silencing and cohesion at the centromere rely on temporal activation of the conserved S phase protein kinase Hsk1-Dfp1. Hsk1-Dfp1 is needed for heterochromatin assembly downstream of Swi6 binding to chromatin; importantly, this activity is independent of the replication function of Hsk1-Dfp1. This defines a temporal connection between S phase, heterochromatin and cohesion that is independent of replication fork passage.


Cell Cycle | 2003

It's All in the Timing: Linking S Phase to Chromatin Structure and Chromosome Dynamics

Julie M. Bailis; Susan L. Forsburg

Many aspects of chromosome biology are fundamentally linked to events that occur during the DNA synthesis (S) phase of the cell cycle. The DNA must be duplicated once, and once exactly, each S phase. Local chromatin structure must also be re-assembled each S phase to incorporate newly replicated sister chromatids. The replication fork is the one complex that potentially interacts with every nucleotide of the genome, providing a mechanism to couple chromatin assembly to S phase passage. Importantly, eukaryotic genomes contain regions of structurally distinct chromatin, such as heterochromatin, defined by distinct patterns of histone modification and specific protein associations.1 Heterochromatin is generally associated with repeated sequence elements near centromeres, telomeres and other sites. Evidence suggests that heterochromatin assembled during S phase supports the association of multiprotein complexes required for many chromosome transactions, including transcriptional silencing, sister-chromatid cohesion, and kinetochore function. These complexes are in turn essential for regulated gene expression, equal chromosome segregation and genomic stability. Intriguingly, recent studies indicate that these processes are linked to S phase by temporal mechanisms as well as by replication- dependent activities (Fig. 1).


Genome Biology | 2002

RNAi hushes heterochromatin.

Julie M. Bailis; Susan L. Forsburg

Repeated DNA elements and region-specific protein modifications combine within chromosomes to form a transcriptionally silent chromatin structure called heterochromatin. Recent work in the fission yeast Schizosaccharomyces pombe reveals that RNA is also an integral component of silent heterochromatin, providing a new perspective on how heterochromatin is organized and maintained in eukaryotic cells.


Cell & Bioscience | 2017

Control of gene expression through the nonsense-mediated RNA decay pathway

Andrew Nickless; Julie M. Bailis; Zhongsheng You

Nonsense-mediated RNA decay (NMD) was originally discovered as a cellular surveillance pathway that safeguards the quality of mRNA transcripts in eukaryotic cells. In its canonical function, NMD prevents translation of mutant mRNAs harboring premature termination codons (PTCs) by targeting them for degradation. However, recent studies have shown that NMD has a much broader role in gene expression by regulating the stability of many normal transcripts. In this review, we discuss the function of NMD in normal physiological processes, its dynamic regulation by developmental and environmental cues, and its association with human disease.

Collaboration


Dive into the Julie M. Bailis's collaboration.

Top Co-Authors

Avatar

Susan L. Forsburg

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tony Hunter

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Zhongsheng You

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eliana B. Gómez

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Jacqueline K. Barton

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge