Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie McGaughran is active.

Publication


Featured researches published by Julie McGaughran.


Journal of Medical Genetics | 2002

Malignant peripheral nerve sheath tumours in neurofibromatosis 1

D G R Evans; M E Baser; Julie McGaughran; S Sharif; Emma Howard; Anthony Moran

Background: Cross sectional studies have shown that 1-2% of patients with neurofibromatosis 1 (NF1) develop malignant peripheral nerve sheath tumours (MPNST). However, no population based longitudinal studies have assessed lifetime risk. Methods: NF1 patients with MPNST were ascertained from two sources for our north west England population of 4.1 million in the 13 year period 1984-1996: the North West Regional NF1 Register and review of notes of patients with MPNST in the North West Regional Cancer Registry. Results: Twenty-one NF1 patients developed MPNST, equivalent to an annual incidence of 1.6 per 1000 and a lifetime risk of 8-13%. There were 37 patients with sporadic MPNST. The median age at diagnosis of MPNST in NF1 patients was 26 years, compared to 62 years in patients with sporadic MPNST (p<0.001). In Kaplan-Meier analyses, the five year survival from diagnosis was 21% for NF1 patients with MPNST, compared to 42% for sporadic cases of MPNST (p=0.09). One NF1 patient developed two separate MPNST in the radiation field of a previous optic glioma. Conclusion: The lifetime risk of MPNST in NF1 is much higher than previously estimated and warrants careful surveillance and a low threshold for investigation.


The New England Journal of Medicine | 2016

A Prospective Study of Sudden Cardiac Death among Children and Young Adults

Richard D. Bagnall; Robert G. Weintraub; Jodie Ingles; Johan Duflou; Laura Yeates; Lien Lam; Andrew M. Davis; T. Thompson; Vanessa Connell; Jennie Wallace; Charles Naylor; Jackie Crawford; Donald R. Love; Lavinia Hallam; Jodi White; Christopher Lawrence; Matthew Lynch; Natalie Morgan; Paul A. James; Desirée du Sart; Rajesh Puranik; Neil E. I. Langlois; Jitendra K. Vohra; Ingrid Winship; John Atherton; Julie McGaughran; Jonathan R. Skinner; Christopher Semsarian

BACKGROUND Sudden cardiac death among children and young adults is a devastating event. We performed a prospective, population-based, clinical and genetic study of sudden cardiac death among children and young adults. METHODS We prospectively collected clinical, demographic, and autopsy information on all cases of sudden cardiac death among children and young adults 1 to 35 years of age in Australia and New Zealand from 2010 through 2012. In cases that had no cause identified after a comprehensive autopsy that included toxicologic and histologic studies (unexplained sudden cardiac death), at least 59 cardiac genes were analyzed for a clinically relevant cardiac gene mutation. RESULTS A total of 490 cases of sudden cardiac death were identified. The annual incidence was 1.3 cases per 100,000 persons 1 to 35 years of age; 72% of the cases involved boys or young men. Persons 31 to 35 years of age had the highest incidence of sudden cardiac death (3.2 cases per 100,000 persons per year), and persons 16 to 20 years of age had the highest incidence of unexplained sudden cardiac death (0.8 cases per 100,000 persons per year). The most common explained causes of sudden cardiac death were coronary artery disease (24% of cases) and inherited cardiomyopathies (16% of cases). Unexplained sudden cardiac death (40% of cases) was the predominant finding among persons in all age groups, except for those 31 to 35 years of age, for whom coronary artery disease was the most common finding. Younger age and death at night were independently associated with unexplained sudden cardiac death as compared with explained sudden cardiac death. A clinically relevant cardiac gene mutation was identified in 31 of 113 cases (27%) of unexplained sudden cardiac death in which genetic testing was performed. During follow-up, a clinical diagnosis of an inherited cardiovascular disease was identified in 13% of the families in which an unexplained sudden cardiac death occurred. CONCLUSIONS The addition of genetic testing to autopsy investigation substantially increased the identification of a possible cause of sudden cardiac death among children and young adults. (Funded by the National Health and Medical Research Council of Australia and others.).


Journal of Medical Genetics | 2009

Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype

Tjitske Kleefstra; W.A.G. van Zelst-Stams; Willy M. Nillesen; Valérie Cormier-Daire; Gunnar Houge; Nicola Foulds; M.F. van Dooren; Marjolein H. Willemsen; Rolph Pfundt; Anne Turner; Meredith Wilson; Julie McGaughran; Anita Rauch; Martin Zenker; Margaret P Adam; M Innes; C Davies; A González-Meneses López; R Casalone; A Weber; Louise Brueton; A Delicado Navarro; M Palomares Bralo; Hanka Venselaar; S P A Stegmann; Helger G. Yntema; H. van Bokhoven; Han G. Brunner

Background: The 9q subtelomeric deletion syndrome (9qSTDS) is clinically characterised by moderate to severe mental retardation, childhood hypotonia and facial dysmorphisms. In addition, congenital heart defects, urogenital defects, epilepsy and behavioural problems are frequently observed. The syndrome can be either caused by a submicroscopic 9q34.3 deletion or by intragenic EHMT1 mutations leading to haploinsufficiency of the EHMT1 gene. So far it has not been established if and to what extent other genes in the 9q34.3 region contribute to the phenotype observed in deletion cases. This study reports the largest cohort of 9qSTDS cases so far. Methods and results: By a multiplex ligation dependent probe amplification (MLPA) approach, the authors identified and characterised 16 novel submicroscopic 9q deletions. Direct sequence analysis of the EHMT1 gene in 24 patients exhibiting the 9qSTD phenotype without such deletion identified six patients with an intragenic EHMT1 mutation. Five of these mutations predict a premature termination codon whereas one mutation gives rise to an amino acid substitution in a conserved domain of the protein. Conclusions: The data do not provide any evidence for phenotype–genotype correlations between size of the deletions or type of mutations and severity of clinical features. Therefore, the authors confirm the EHMT1 gene to be the major determinant of the 9qSTDS phenotype. Interestingly, five of six patients who had reached adulthood had developed severe psychiatric pathology, which may indicate that EHMT1 haploinsufficiency is associated with neurodegeneration in addition to neurodevelopmental defect.


Journal of Medical Genetics | 1999

A clinical study of type 1 neurofibromatosis in north west England

Julie McGaughran; D I Harris; Dian Donnai; D Teare; R MacLeod; R Westerbeek; H Kingston; M Super; R Harris; D G R Evans

A clinical study of patients on the North West Regional Genetic Register with neurofibromatosis type 1 (NF1) identified 523 affected cases from 304 families. In those for whom relevant information was available, 86.7% (383 of 442) had more than six café au lait patches, 83.8% (310 of 370) had axillary freckling, 42.3% (151 of 357) had inguinal freckling, and 63% (157 of 249) had Lisch nodules. Cutaneous neurofibromas were present in 59.4% (217 of 365) and 45.5% (150 of 330) were noted to have subcutaneous tumours. Plexiform neurofibromas were present in 15.3% (80 of 523). A positive family history of NF1 was found in 71.2% (327 of 459) and 28.8% (132 of 459) of affected patients were considered to be the result of a new mutation. Learning difficulties of varying severity occurred in 62% (186 of 300). CNS tumours associated with NF1 were reported in 9.4% (49) of patients, optic gliomas occurring in 25 of these, 4.8% of patients. Some degree of scoliosis was reported for 11.7% (61), 1.9% (10) had pseudoarthrosis, 4.3% (23) had epilepsy, and 2.1% (11) had spinal neurofibromas. Actuarial analyses were carried out for both optic glioma and malignant nerve sheath tumours and the data are presented.


American Journal of Human Genetics | 1999

Delineation of the Critical Deletion Region for Congenital Heart Defects, on Chromosome 8p23.1

Koenraad Devriendt; Gert Matthijs; Roeland Van Dael; Marc Gewillig; Benedicte Eyskens; Helle Hjalgrim; Brigitte Dolmer; Julie McGaughran; Karen Brøndum-Nielsen; Peter Marynen; Jean-Pierre Fryns; Joris Vermeesch

Deletions in the distal region of chromosome 8p (del8p) are associated with congenital heart malformations. Other major manifestations include microcephaly, intrauterine growth retardation, mental retardation, and a characteristic hyperactive, impulsive behavior. We studied genotype-phenotype correlations in nine unrelated patients with a de novo del8p, by using the combination of classic cytogenetics, FISH, and the analysis of polymorphic DNA markers. With the exception of one large terminal deletion, all deletions were interstitial. In five patients, a commonly deleted region of approximately 6 Mb was present, with breakpoints clustering in the same regions. One patient without a heart defect or microcephaly but with mild mental retardation and characteristic behavior had a smaller deletion within this commonly deleted region. Two patients without a heart defect had a more proximal interstitial deletion that did not overlap with the commonly deleted region. Taken together, these data allowed us to define the critical deletion regions for the major features of a del8p.


Human Mutation | 2008

Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome.

May Tassabehji; Zhi Ming Fang; Emma Hilton; Julie McGaughran; Zhongming Zhao; Charles E. de Bock; Emma Howard; Michael Malass; Dian Donnai; Ashish D. Diwan; Forbes D.C. Manson; Dédée F. Murrell; Raymond A. Clarke

Klippel‐Feil syndrome (KFS) is a congenital disorder of spinal segmentation distinguished by the bony fusion of anterior/cervical vertebrae. Scoliosis, mirror movements, otolaryngological, kidney, ocular, cranial, limb, and/or digit anomalies are often associated. Here we report mutations at the GDF6 gene locus in familial and sporadic cases of KFS including the recurrent missense mutation of an extremely conserved residue c.866T>C (p.Leu289Pro) in association with mirror movements and an inversion breakpoint downstream of the gene in association with carpal, tarsal, and vertebral fusions. GDF6 is expressed at the boundaries of the developing carpals, tarsals, and vertebrae and within the adult vertebral disc. GDF6 knockout mice are best distinguished by fusion of carpals and tarsals and GDF6 knockdown in Xenopus results in a high incidence of anterior axial defects consistent with a role for GDF6 in the etiology, diversity, and variability of KFS. Hum Mutat 0,1–11, 2008.


American Journal of Medical Genetics Part A | 2009

Elements of morphology: standard terminology for the head and face.

Judith Allanson; Christopher Cunniff; H. Eugene Hoyme; Julie McGaughran; Max Muenke; Giovanni Neri

An international group of clinicians working in the field of dysmorphology has initiated the standardization of terms used to describe human morphology. The goals are to standardize these terms and reach consensus regarding their definitions. In this way, we will increase the utility of descriptions of the human phenotype and facilitate reliable comparisons of findings among patients. Discussions with other workers in dysmorphology and related fields, such as developmental biology and molecular genetics, will become more precise. Here we introduce the anatomy of the craniofacies and define and illustrate the terms that describe the major characteristics of the cranium and face. Published 2009 Wiley‐Liss, Inc.


Heart | 2012

A cost-effectiveness model of genetic testing for the evaluation of families with hypertrophic cardiomyopathy

Jodie Ingles; Julie McGaughran; Paul Anthony Scuffham; John Atherton; Christopher Semsarian

Background Traditional management of families with hypertrophic cardiomyopathy (HCM) involves periodic lifetime clinical screening of family members, an approach that does not identify all gene carriers owing to incomplete penetrance and significant clinical heterogeneity. Limitations in availability and cost have meant genetic testing is not part of routine clinical management for many HCM families. Objective To determine the cost-effectiveness of the addition of genetic testing to HCM family management, compared with clinical screening alone. Methods A probabilistic Markov decision model was used to determine cost per quality-adjusted life-year and cost for each life-year gained when genetic testing is included in the management of Australian families with HCM, compared with the conventional approach of periodic clinical screening alone. Results The incremental cost-effectiveness ratio (ICER) was


European Journal of Human Genetics | 2003

Mutations in PAX1 may be associated with Klippel-Feil syndrome.

Julie McGaughran; A Oates; Dian Donnai; Andrew P. Read; May Tassabehji

A785 (£510 or €587) per quality-adjusted life-year gained, and


Human Mutation | 2010

Molecular Analysis Expands the Spectrum of Phenotypes Associated with GLI3 Mutations

Jennifer J. Johnston; Julie C. Sapp; Joyce T. Turner; David J. Amor; Salim Aftimos; Kyrieckos A. Aleck; Maureen Bocian; Joann Bodurtha; Gerald F. Cox; Cynthia J. Curry; Ruth Day; Dian Donnai; Michael Field; Ikuma Fujiwara; Michael T. Gabbett; Moran Gal; John M. Graham; Peter Hedera; Raoul C. M. Hennekam; Joseph H. Hersh; Robert J. Hopkin; Hülya Kayserili; Alexa Kidd; Virginia E. Kimonis; Angela E. Lin; Sally Ann Lynch; Melissa Maisenbacher; Sahar Mansour; Julie McGaughran; Lakshmi Mehta

A12 720 (£8261 or €9509) per additional life-year gained making genetic testing a very cost-effective strategy. Sensitivity analyses showed that the cost of proband genetic testing was an important variable. As the cost of proband genetic testing decreased, the ICER decreased and was cost saving when the cost fell below

Collaboration


Dive into the Julie McGaughran's collaboration.

Top Co-Authors

Avatar

John Atherton

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Hunt

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Davis

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dian Donnai

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa Connell

Royal Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge