Julie Perrot
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Perrot.
Nature | 2008
Eric Calais; Nicolas d'Oreye; Julie Albaric; Anne Deschamps; Damien Delvaux; Jacques Déverchère; Cynthia Ebinger; Richard W. Ferdinand; François Kervyn; Athanas Macheyeki; Anneleen Oyen; Julie Perrot; E. E. Saria; Benoît Smets; D. Sarah Stamps; Christelle Wauthier
Continental rifts begin and develop through repeated episodes of faulting and magmatism, but strain partitioning between faulting and magmatism during discrete rifting episodes remains poorly documented. In highly evolved rifts, tensile stresses from far-field plate motions accumulate over decades before being released during relatively short time intervals by faulting and magmatic intrusions. These rifting crises are rarely observed in thick lithosphere during the initial stages of rifting. Here we show that most of the strain during the July–August 2007 seismic crisis in the weakly extended Natron rift, Tanzania, was released aseismically. Deformation was achieved by slow slip on a normal fault that promoted subsequent dyke intrusion by stress unclamping. This event provides compelling evidence for strain accommodation by magma intrusion, in addition to slip along normal faults, during the initial stages of continental rifting and before significant crustal thinning.
Geochemistry Geophysics Geosystems | 2010
Sylvie Leroy; Francis Lucazeau; Elia D'Acremont; Louise Watremez; Julia Autin; Stephane Rouzo; Nicolas Bellahsen; Christel Tiberi; Cynthia Ebinger; Marie-Odile Beslier; Julie Perrot; Philippe Razin; Frédérique Rolandone; Heather Sloan; G. W. Stuart; Ali Al-Lazki; K. Al Toubi; François Bache; A. Bonneville; B. Goutorbe; Philippe Huchon; Patrick Unternehr; Khaled Khanbari
Continental rifts and passive continental margins show fundamental along-axis segmentation patterns that have been attributed to one or a number of different processes: extensional fault geometry, variable stretching along strike, preexisting lithospheric compositional and structural heterogeneities, oblique rifting, and the presence or absence of eruptive volcanic centers. The length and width scales of the rift stage fault-bounded basin systems change during the late evolution of the new plate boundary, and the role of magmatism may increase as rifting progresses to continental rupture. Along obliquely spreading ridges, first-order mid-ocean ridge geometries originate during the synrift stage, indicating an intimate relationship between magma production and transform fault spacing and location. The Gulf of Aden rift is a young ocean basin in which the earliest synrift to breakup structures are well exposed onshore and covered by thin sediment layers offshore. This obliquely spreading rift is considered magma-poor and has several large-offset transforms that originated during late stage rifting and control the first-order axial segmentation of the spreading ridge. Widely spaced geophysical transects of passive margins that produce only isolated 2-D images of crust and uppermost mantle structure are inadequate for evaluation of competing rift evolution models. Using closely spaced new geophysical and geological observations from the Gulf of Aden we show that rift sectors between transforms have a large internal variability over short distances (∼10 km): the ocean-continent transition (OCT) evolves from a narrow magmatic transition to wider zones where continental mantle is probably exhumed. We suggest that this small-scale variability may be explained (1) by the distribution of volcanism and (2) by the along-strike differences in time-averaged extension rate of the oblique rift system. The volcanism may be associated with (1) the long-offset Alula-Fartak Fracture Zone, which may enhance magma production on its younger side, or (2) channeled flow from the Afar plume material along the newly formed OCT and the spreading ridge. Oblique extension and/or hot spot interactions may thereby have a significant control on the styles of rifting and continental breakup and on the evolution of many magma-poor margins.
Geophysical Research Letters | 2011
Bernard Mercier de Lépinay; Anne Deschamps; Frauke Klingelhoefer; Yves Mazabraud; Bertrand Delouis; Valérie Clouard; Y. Hello; J. Crozon; Boris Marcaillou; David Graindorge; Martin Vallée; Julie Perrot; Marie-Paule Bouin; Jean-Marie Saurel; Philippe Charvis; Mildor St‐Louis
After the January 12, 2010, Haiti earthquake, we deployed a mainly offshore temporary network of seismologic stations around the damaged area. The distribution of the recorded aftershocks, together with morphotectonic observations and mainshock analysis, allow us to constrain a complex fault pattern in the area. Almost all of the aftershocks have a N‐S compressive mechanism, and not the expected left‐lateral strike‐slip mechanism. A first‐order slip model of the mainshock shows a N264°E north‐dipping plane, with a major left‐lateral component and a strong reverse component. As the aftershock distribution is sub‐parallel and close to the Enriquillo fault, we assume that although the cause of the catastrophe was not a rupture along the Enriquillo fault, this fault had an important role as a mechanical boundary. The azimuth of the focal planes of the aftershocks are parallel to the north‐dipping faults of the Transhaitian Belt, which suggests a triggering of failure on these discontinuities. In the western part, the aftershock distribution reflects the triggering of slip on similar faults, and/or, alternatively, of the south‐dipping faults, such the Trois‐Baies submarine fault. These observations are in agreement with a model of an oblique collision of an indenter of the oceanic crust of the Southern Peninsula and the sedimentary wedge of the Transhaitian Belt: the rupture occurred on a wrench fault at the rheologic boundary on top of the under‐thrusting rigid oceanic block, whereas the aftershocks were the result of the relaxation on the hanging wall along pre‐existing discontinuities in the frontal part of the Transhaitian Belt.
Izvestiya-physics of The Solid Earth | 2007
Valentina V. Mordvinova; Anne Deschamps; T. Dugarmaa; Jacques Déverchère; M. Ulziibat; Vladimir San'kov; A. A. Artem’ev; Julie Perrot
The S wave velocity distribution in the Earth’s crust and the first two hundred kilometers of the upper mantle is inferred from data of a seismological linear network including 18 broadband stations installed in the framework of the international teleseismic experiment carried out in 2003 in the south of Siberia and in Mongolia. Models were constructed by using P-to-S received function inversion beneath each station. Vertical cross sections of S wave velocities from the surface to depths of 65 and 270 km covering the entire 1000-km profile are constructed by the linear spline interpolation of individual velocity models. The vertical sections are also represented as anomalies relative to the standard velocity model. The most intense low velocity anomalies (from −3 to −6%) in the crust and upper mantle are identified beneath the Sayan, Khamar-Daban, and Khangai highlands and the Djida fold zone and agree both with other geophysical data and with the distribution of Late Cenozoic volcanic fields. The results of this work suggest that the activation of Mongolian-Siberian highlands is largely connected with uplift of the asthenosphere to the base of the crust.
Geological Society of America Special Papers | 1998
Eric Calais; Julie Perrot; B. Mercier de Lépinay
We present a compilation of marine geophysical data (Seabeam bathymetry, sidescan sonar, seismic-reflection profiles) collected along the northern Caribbean plate boundary from the southern margin of Cuba to the northern margin of Hispaniola. We compare the structural observations with the seismicity to quantify the kinematic regime along the plate boundary. The marine data show a narrow zone of active deformation extending along a major left-lateral strike-slip fault, the Oriente fault. The most prominent structural feature is the Santiago deformed belt, a transpressive deformation area that extends along the southern Cuban margin and displays active folding and reverse faulting. Dextral offsets in the Oriente fault trace create tensional strain and local pull-apart basins. The earthquake distribution and source parameters are well correlated with the active tectonic structures. They show a combination of north-south compression and left-lateral shear starting at about 78°W long. and continuing all the way to the east along the southern Cuban margin. Our results indicate the existence of a small convergence component added to the mostly strike-slip displacement between the Caribbean and North America plates. This convergence component is responsible for large-scale transpressive structures such as the Santiago deformed belt and is compatible with local tensional structures due to the geometry of the main fault trace. On the basis of instrumental and historical seismicity records, we compute a seismic slip rate of 13–15 mm/yr along the northern Caribbean plate boundary. This result agrees well with the 12 ± 3 mm/yr NUVEL-1 estimate and could indicate that most of the stress along the plate boundary is released seismically. Calais, E., Perrot, J., and Mercier de Lépinay, B., 1998, Strike-slip tectonics and seismicity along the northern Caribbean pla te ou dary from Cuba to Hispaniola, in Dolan, J. F., and Mann, P., eds., Active Strike-Slip and Collisional Tectonics of the Northern Caribbean Plate Boundary Zone: B oulder, Colorado, Geological Society of America Special Paper 326. 125 on January 14, 2010 specialpapers.gsapubs.org Downloaded from
Geochemistry Geophysics Geosystems | 2014
Julie Albaric; Jacques Déverchère; Julie Perrot; Andrey Jakovlev; Anne Deschamps
In this study, we explore the origin of lower crustal seismicity and the factors controlling rift propagation using seismological data recorded within the youngest part of the East African Rift System, the North Tanzanian Divergence (NTD). Most earthquakes below Lake Manyara occur at depth ranging between 20 and 40 km and have a swarm-like distribution. Focal mechanisms of 26 events indicate a combination of strike-slip and normal faulting involving Archaean basement structures and forming a relay zone. The derived local stress regime is transtensive and the minimum principal stress is oriented N110°E. Crustal seismic tomography reveals low-velocity anomalies below the rifted basins in the NTD, interpreted as localized thermomechanical perturbations promoting fluid release and subsequent seismicity in the lower crust. SKS splitting analysis in the NTD indicates seismic anisotropy beneath 17 stations most likely due to aligned magma lenses and/or dikes beneath the rift and to the lithospheric fabrics. Our results favor a strain pattern intermediate between purely mechanical and purely magmatic. We suggest that melt products arising from a large asthenospheric thermal anomaly enhance lithospheric weakening and facilitate faulting and creeping on critically oriented inherited structures of the Precambrian lower crust. Although the crust is unlikely weakened at a point comparable to other parts of the East African Rift System, this deep-seated thermomechanical process is efficient enough to allow slow rift propagation within the eastern Tanzanian cratonic edge.
Physics of the Earth and Planetary Interiors | 1994
Julie Perrot; Anne Deschamps; Véronique Farra; Jean Virieux
Abstract New broadband seismographs enable us to analyse in more detail mantle waves perturbed by the complexity of the medium around the source. We propose to apply ray tracing for complex media around the source and more efficient ray tracing for a spherically symmetric Earth through the mantle up to the stations. We show on synthetic examples that the complexity around the source may indeed modify considerably the seismograms. We analyse theoretical teleseismic waveforms and relate modulation of the amplitude to the mediums structure around the source. For the example of the Romanian earthquake of 30 May 1990, we analyse three seismograms which were not modelled correctly with a spherically symmetric Earth model. By adding some near-surface interfaces, we were able to improve the fit between observed and computed seismograms. The deduced hypothetical model, which may not be the only possible model, is in agreement with proposed published models in the area.
Journal of Geophysical Research | 2014
Alexey Sukhovich; Jean-Olivier Irisson; Julie Perrot; Guust Nolet
A network of moored hydrophones is an effective way of monitoring seismicity of oceanic ridges since it allows detection and localization of underwater events by recording generated T waves. The high cost of ship time necessitates long periods (normally a year) of autonomous functioning of the hydrophones, which results in very large data sets. The preliminary but indispensable part of the data analysis consists of identifying all T wave signals. This process is extremely time consuming if it is done by a human operator who visually examines the entire database. We propose a new method for automatic signal discrimination based on the Gradient Boosted Decision Trees technique that uses the distribution of signal spectral power among different frequency bands as the discriminating characteristic. We have applied this method to automatically identify the types of acoustic signals in data collected by two moored hydrophones in the North Atlantic. We show that the method is capable of efficiently resolving the signals of seismic origin with a small percentage of wrong identifications and missed events: 1.2% and 0.5% for T waves and 14.5% and 2.8% for teleseismic P waves, respectively. In addition, good identification rates for signals of other types (iceberg and ship generated) are obtained. Our results indicate that the method can be successfully applied to automate the analysis of other (not necessarily acoustic) databases provided that enough information is available to describe statistical properties of the signals to be identified.
Terra Nova | 2004
Sylvie Leroy; Pascal Gente; Marc Fournier; Elia D'Acremont; Philippe Patriat; Marie-Odile Beslier; Nicolas Bellahsen; Marcia Maia; Angélina Blais; Julie Perrot; Ali Al-Kathiri; Serge Merkouriev; Jean-Marc Fleury; Pierre-Yves Ruellan; Claude Lepvrier; Philippe Huchon
Geophysical Journal International | 2004
Isabelle Contrucci; Frauke Klingelhöfer; Julie Perrot; R. Bartolome; M.-A. Gutscher; M. Sahabi; J. Malod; Jean-Pierre Réhault