Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Richer is active.

Publication


Featured researches published by Julie Richer.


Clinical Genetics | 2016

Utility of whole‐exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care

Sarah L. Sawyer; Taila Hartley; David A. Dyment; Chandree L. Beaulieu; Jeremy Schwartzentruber; Amanda Smith; H.M. Bedford; G. Bernard; Francois P. Bernier; Bernard Brais; Dennis E. Bulman; J. Warman Chardon; David Chitayat; Johnny Deladoëy; Bridget A. Fernandez; P. Frosk; Michael T. Geraghty; B. Gerull; William T. Gibson; R.M. Gow; G.E. Graham; Jane Green; Elise Héon; Gabriella A. Horvath; A.M. Innes; N. Jabado; R.H. Kim; R.K. Koenekoop; A. Khan; O.J. Lehmann

An accurate diagnosis is an integral component of patient care for children with rare genetic disease. Recent advances in sequencing, in particular whole‐exome sequencing (WES), are identifying the genetic basis of disease for 25–40% of patients. The diagnostic rate is probably influenced by when in the diagnostic process WES is used. The Finding Of Rare Disease GEnes (FORGE) Canada project was a nation‐wide effort to identify mutations for childhood‐onset disorders using WES. Most children enrolled in the FORGE project were toward the end of the diagnostic odyssey. The two primary outcomes of FORGE were novel gene discovery and the identification of mutations in genes known to cause disease. In the latter instance, WES identified mutations in known disease genes for 105 of 362 families studied (29%), thereby informing the impact of WES in the setting of the diagnostic odyssey. Our analysis of this dataset showed that these known disease genes were not identified prior to WES enrollment for two key reasons: genetic heterogeneity associated with a clinical diagnosis and atypical presentation of known, clinically recognized diseases. What is becoming increasingly clear is that WES will be paradigm altering for patients and families with rare genetic diseases.


Journal of Medical Genetics | 2015

The clinical application of genome-wide sequencing for monogenic diseases in Canada: Position Statement of the Canadian College of Medical Geneticists

Kym M. Boycott; Taila Hartley; Shelin Adam; Francois P. Bernier; Karen Chong; Bridget A. Fernandez; Jan M. Friedman; Michael T. Geraghty; Stacey Hume; Bartha Maria Knoppers; Anne-Marie Laberge; Jacek Majewski; Roberto Mendoza-Londono; M. Stephen Meyn; Jacques L. Michaud; Tanya N. Nelson; Julie Richer; Bekim Sadikovic; David L. Skidmore; Tracy L. Stockley; Sherry Taylor; Clara van Karnebeek; Ma'n H. Zawati; Julie Lauzon; Christine M. Armour

Purpose and scope The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. Methods of statement development Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. Results and conclusions Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally.


American Journal of Medical Genetics Part A | 2012

R179H Mutation in ACTA2 Expanding the Phenotype to Include Prune-Belly Sequence and Skin Manifestations

Julie Richer; Dianna M. Milewicz; R. Gow; J. de Nanassy; G. Maharajh; E. Miller; L. Oppenheimer; G. Weiler; M. O'Connor

Mutations in ACTA2 (smooth muscle cell—specific isoform of α‐actin) lead to a predisposition to thoracic aortic aneurysms and other vascular diseases. More recently, the ACTA2 R179H mutation has been described in individuals with global smooth muscle dysfunction. We report a patient heterozygous for the mutation in ACTA2 R179H who presented with megacystis at 13 weeks gestational age and, at birth, with prune‐belly sequence. He also had deep skin dimples and creases on his palms and soles, a finding not previously described but possibly related to ACTA2. To our knowledge, this is the first report of the R179H mutation in ACTA2 in a child with prune‐belly sequence. We think the R179H mutation in ACTA2 should be included in the differential diagnosis of individuals presenting with the sequence without an identified mechanical obstruction. Furthermore, as ACTA2 R179H has been reported in patients with severe vasculomyopathy and premature death, we recommend that molecular testing for this mutation be considered in fetuses presenting with fetal megacystis with a normal karyotype, particularly if the bladder diameter is 15 mm or more, to allow expectant parents to make an informed decision.


Human Mutation | 2015

De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes.

María Concepción Gil-Rodríguez; Matthew A. Deardorff; Morad Ansari; Christopher A. Tan; Ilaria Parenti; Carolina Baquero-Montoya; Lilian Bomme Ousager; Beatriz Puisac; María Hernández-Marcos; María Esperanza Teresa-Rodrigo; Íñigo Marcos-Alcalde; Jan Jaap Wesselink; Silvia Lusa-Bernal; Emilia K. Bijlsma; Diana Braunholz; Inés Bueno-Martínez; Dinah Clark; Nicola S. Cooper; Cynthia J. Curry; Richard Fisher; Alan Fryer; Jaya Ganesh; Cristina Gervasini; Gabriele Gillessen-Kaesbach; Yiran Guo; Hakon Hakonarson; Robert J. Hopkin; Maninder Kaur; Brendan J. Keating; Maria Kibæk

Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS‐like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS‐like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant‐negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3‐associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for ∼1%–2% of CdLS‐like phenotypes.


Genetics in Medicine | 2017

Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections

Josephina Meester; Geert Vandeweyer; Isabel Pintelon; Martin Lammens; Lana Van Hoorick; Simon De Belder; Kathryn Waitzman; Luciana Young; Larry W. Markham; Julie Vogt; Julie Richer; Luc M. Beauchesne; Sheila Unger; Andrea Superti-Furga; Milan Prsa; Rami Dhillon; Edwin Reyniers; Harry C. Dietz; Wim Wuyts; Geert Mortier; Aline Verstraeten; Lut Van Laer; Bart Loeys

Purpose:Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families.Methods:We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed.Results:We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture.Conclusion:In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386–395.


Human Mutation | 2016

Mandibulofacial Dysostosis with Microcephaly: Mutation and Database Update

Lijia Huang; Megan R. Vanstone; Taila Hartley; Matthew Osmond; Nick Barrowman; Judith Allanson; Laura D. Baker; Tabib Dabir; Katrina M. Dipple; William B. Dobyns; Jane Estrella; Hanna Faghfoury; Francine P. Favaro; Himanshu Goel; Pernille A. Gregersen; Karen W. Gripp; Art Grix; Maria Leine Guion-Almeida; Margaret Harr; Cindy Hudson; Alasdair G. W. Hunter; John P. Johnson; Shelagh Joss; Amy Kimball; Usha Kini; Antonie D. Kline; Julie Lauzon; Dorte L. Lildballe; Vanesa López-González; Johanna Martinezmoles

Mandibulofacial dysostosis with microcephaly (MFDM) is a multiple malformation syndrome comprising microcephaly, craniofacial anomalies, hearing loss, dysmorphic features, and, in some cases, esophageal atresia. Haploinsufficiency of a spliceosomal GTPase, U5–116 kDa/EFTUD2, is responsible. Here, we review the molecular basis of MFDM in the 69 individuals described to date, and report mutations in 38 new individuals, bringing the total number of reported individuals to 107 individuals from 94 kindreds. Pathogenic EFTUD2 variants comprise 76 distinct mutations and seven microdeletions. Among point mutations, missense substitutions are infrequent (14 out of 76; 18%) relative to stop‐gain (29 out of 76; 38%), and splicing (33 out of 76; 43%) mutations. Where known, mutation origin was de novo in 48 out of 64 individuals (75%), dominantly inherited in 12 out of 64 (19%), and due to proven germline mosaicism in four out of 64 (6%). Highly penetrant clinical features include, microcephaly, first and second arch craniofacial malformations, and hearing loss; esophageal atresia is present in an estimated ∼27%. Microcephaly is virtually universal in childhood, with some adults exhibiting late “catch‐up” growth and normocephaly at maturity. Occasionally reported anomalies, include vestibular and ossicular malformations, reduced mouth opening, atrophy of cerebral white matter, structural brain malformations, and epibulbar dermoid. All reported EFTUD2 mutations can be found in the EFTUD2 mutation database (http://databases.lovd.nl/shared/genes/EFTUD2).


Clinical Genetics | 2017

Debunking Occam's razor: Diagnosing multiple genetic diseases in families by whole exome sequencing

T.B. Balci; Taila Hartley; Yanwei Xi; David A. Dyment; Chandree L. Beaulieu; Francois P. Bernier; L. Dupuis; Gabriella A. Horvath; Roberto Mendoza-Londono; Chitra Prasad; Julie Richer; X.‐R. Yang; Christine M. Armour; Eric Bareke; Bridget A. Fernandez; H.J. McMillan; Ryan E. Lamont; Jacek Majewski; Jillian S. Parboosingh; A.N. Prasad; C.A. Rupar; Jeremy Schwartzentruber; Amanda Smith; Martine Tétreault; A.M. Innes; Kym M. Boycott

Recent clinical whole exome sequencing (WES) cohorts have identified unanticipated multiple genetic diagnoses in single patients. However, the frequency of multiple genetic diagnoses in families is largely unknown.


Human Molecular Genetics | 2015

Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability

Kristin D. Kernohan; Martine Tétreault; Urszula Liwak-Muir; Michael T. Geraghty; Wen Qin; Sunita Venkateswaran; Jorge Davila; Martin Holcik; Jacek Majewski; Julie Richer; Kym M. Boycott

Protein translation is an essential cellular process initiated by the association of a methionyl–tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B–PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases.


Genetics in Medicine | 2011

Research use of leftover newborn bloodspots: Attitudes of Canadian geneticists regarding storage and informed consent requirements

Julie Richer; Musie Ghebremichael; Albert E. Chudley; Walter Robinson; Benjamin S. Wilfond; Mildred Z. Solomon

Purpose: Leftover newborn spots can provide a powerful research tool as a population-wide DNA bank. Some provinces/states store them for more than 20 years; however, parents are usually not informed of the retention of leftover newborn spots. To examine the opinions of Canadian geneticists regarding permission for leftover newborn spots storage for research purposes and the associated risks, a web-based survey was distributed to all members of the Canadian College of Medical Geneticists with a valid e-mail address (n = 209) and completed by 78 respondents (37%).Results: The majority of respondents (73%) favored opt-out notification for retention of samples that would be held for longer than 2 years. For research on multifactorial conditions using leftover newborn spots originally banked without parental permission, geneticists favored different types of permission depending on the level of identifiable information attached to samples. Thirty-eight percent were concerned that information pamphlets that state that leftover newborn spots will be stored and may be “a source of DNA for research” would lead to a decreased participation in newborn screening. Twenty-eight percent believed that group stigma or family anxiety was likely to result from using nonidentified leftover newborn spots to study multifactorial conditions.Conclusion: The concerns of this knowledgeable cohort supports the critical importance of public engagement about both the potential risks and societal benefits associated with the use of leftover newborn spots in research as policy for leftover newborn spots is developed.


American Journal of Medical Genetics Part A | 2015

Expanding the clinical spectrum of ocular anomalies in Noonan syndrome: Axenfeld-anomaly in a child with PTPN11 mutation.

Andrea Guerin; Joyce So; Kamiar Mireskandari; Soghra Jougeh-Doust; Caitlin Chisholm; Regan Klatt; Julie Richer

Ocular anomalies have been frequently reported in Noonan syndrome. Anterior segment anomalies have been described in 57% of PTPN11 positive patients, with the most common findings being corneal changes and in particular, prominent corneal nerves and cataracts. We report on a neonate with a confirmed PTPN11 mutation and ocular findings consistent with Axenfeld anomaly. The patient initially presented with non‐immune hydrops and subsequently developed hypertrophic cardiomyopathy and dysmorphic features typical of Noonan syndrome. While a pathogenic mutation in PTPN11 was confirmed, prior testing for the two common genes associated with Axenfeld–Rieger syndrome, PITX2, and FOXC1 was negative. This finding expands the spectrum of anterior chamber anomalies seen in Noonan syndrome and perhaps suggests a common neural crest related mechanism that plays a critical role in the development of the eye and other organs.

Collaboration


Dive into the Julie Richer's collaboration.

Top Co-Authors

Avatar

Kym M. Boycott

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Christine M. Armour

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

David A. Dyment

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Taila Hartley

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Geraghty

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Nikkel

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bridget A. Fernandez

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge