Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie S. Lau is active.

Publication


Featured researches published by Julie S. Lau.


Nature Immunology | 2001

B7-H3: A costimulatory molecule for T cell activation and IFN-γ production

Andrei I. Chapoval; Jian Ni; Julie S. Lau; Ryan A. Wilcox; Dallas B. Flies; Ding Liu; Haidong Dong; Gabriel L. Sica; Gefeng Zhu; Koji Tamada; Lieping Chen

We describe here a newly identified member of the human B7 family, designated B7 homolog 3 (B7-H3), that shares 20–27% amino acid identity with other B7 family members. B7-H3 mRNA is not detectable in peripheral blood mononuclear cells, although it is found in various normal tissues and in several tumor cell lines. Expression of B7-H3 protein, however, can be induced on dendritic cells (DCs) and monocytes by inflammatory cytokines and a combination of phorbol myristate acetate (PMA) + ionomycin. Soluble B7-H3 protein binds a putative counter-receptor on activated T cells that is distinct from CD28, cytotoxic T lymphocyte antigen 4 (CTLA-4), inducible costimulator (ICOS) and PD-1. B7-H3 costimulates proliferation of both CD4+ and CD8+ T cells, enhances the induction of cytotoxic T cells and selectively stimulates interferon γ (IFN-γ) production in the presence of T cell receptor signaling. In contrast, inclusion of antisense B7-H3 oligonucleotides decreases the expression of B7-H3 on DCs and inhibits IFN-γ production by DC-stimulated allogeneic T cells. Thus, we describe a newly identified costimulatory pathway that may participate in the regulation of cell-mediated immune responses.


Journal of Cell Biology | 2004

53BP1 is required for class switch recombination

Irene M. Ward; Bernardo Reina-San-Martin; Alexandru Olaru; Kay Minn; Koji Tamada; Julie S. Lau; Marilia Cascalho; Lieping Chen; André Nussenzweig; Ferenc Livak; Michel C. Nussenzweig; Junjie Chen

53BP1 participates early in the DNA damage response and is involved in cell cycle checkpoint control. Moreover, the phenotype of mice and cells deficient in 53BP1 suggests a defect in DNA repair (Ward et al., 2003b). Therefore, we asked whether or not 53BP1 would be required for the efficient repair of DNA double strand breaks. Our data indicate that homologous recombination by gene conversion does not depend on 53BP1. Moreover, 53BP1-deficient mice support normal V(D)J recombination, indicating that 53BP1 is not required for “classic” nonhomologous end joining. However, class switch recombination is severely impaired in the absence of 53BP1, suggesting that 53BP1 facilitates DNA end joining in a way that is not required or redundant for the efficient closing of RAG-induced strand breaks. These findings are similar to those observed in mice or cells deficient in the tumor suppressors ATM and H2AX, further suggesting that the functions of ATM, H2AX, and 53BP1 are closely linked.


Cancer Research | 2008

Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent

Chitta Ranjan Patra; Resham Bhattacharya; Enfeng Wang; Aaron Katarya; Julie S. Lau; Shamit K. Dutta; Michael H. Muders; Shanfeng Wang; Sarah A. Buhrow; Stephanie L. Safgren; Michael J. Yaszemski; Joel M. Reid; Priyabrata Mukherjee; Debabrata Mukhopadhyay

One of the key challenges in anticancer therapy is the toxicity and poor bioavailability of the anticancer drugs. Nanotechnology can play a pivotal role by delivering drugs in a targeted fashion to the malignant cells that will reduce the systemic toxicity of the anticancer drug. In this report, we show a stepwise development of a nanoparticle-based targeted delivery system for in vitro and in vivo therapeutic application in pancreatic cancer. In the first part of the study, we have shown the fabrication and characterization of the delivery system containing gold nanoparticle as a delivery vehicle, cetuximab as a targeting agent, and gemcitabine as an anticancer drug for in vitro application. Nanoconjugate was first characterized physico-chemically. In vitro targeting efficacy, tested against three pancreatic cancer cell lines (PANC-1, AsPC-1, and MIA Paca2) with variable epidermal growth factor receptor (EGFR) expression, showed that gold uptake correlated with EGFR expression. In the second part, we showed the in vivo therapeutic efficacy of the targeted delivery system. Administration of this targeted delivery system resulted in significant inhibition of pancreatic tumor cell proliferation in vitro and orthotopic pancreatic tumor growth in vivo. Tumor progression was monitored noninvasively by measuring bioluminescence of the implanted tumor cells. Pharmacokinetic experiments along with the quantitation of gold both in vitro and in vivo further confirmed that the inhibition of tumor growth was due to targeted delivery. This strategy could be used as a generalized approach for the treatment of a variety of cancers characterized by overexpression of EGFR.


Journal of Immunology | 2003

Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family

In Hak Choi; Gefeng Zhu; Gabriel L. Sica; Scott E. Strome; John C. Cheville; Julie S. Lau; Yuwen Zhu; Dallas B. Flies; Koji Tamada; Lieping Chen

B7-H4 is a recently identified B7 family member that negatively regulates T cell immunity by the inhibition of T cell proliferation, cytokine production, and cell cycle progression. In this study, we report that the genomic DNA of human B7-H4 is mapped on chromosome 1 comprised of six exons and five introns spanning 66 kb, of which exon 6 is used for alternative splicing to generate two different transcripts. Similar B7-H4 structure is also found in mouse genomic DNA in chromosome 3. A human B7-H4 pseudogene is identified in chromosome 20p11.1 with a single exon and two stop codons in the coding region. Immunohistochemistry analysis using B7-H4-specific mAb demonstrates that B7-H4 is not expressed on the majority of normal human tissues. In contrast, up to 85% (22 of 26) of ovarian cancer and 31% (5 of 16) of lung cancer tissues constitutively express B7-H4. Our results indicate a tight regulation of B7-H4 expression in the translational level in normal peripheral tissues and a potential role of B7-H4 in the evasion of tumor immunity.


Journal of Immunology | 2005

Cigarette smoke extract suppresses human dendritic cell function leading to preferential induction of Th-2 priming

Robert Vassallo; Koji Tamada; Julie S. Lau; Paula R. Kroening; Lieping Chen

Dendritic cells (DC) are key regulators of immune responses. In the current study, we hypothesized that cigarette smoke-induced aberrance in DC function is an important mechanism by which smokers develop cancer, infection, and allergy—diseases common in smokers. We demonstrate that cigarette smoke extract (CSE) inhibits DC-mediated priming of T cells, specifically inhibiting the secretion of IFN-γ whereas enhancing the production of IL-4 in the MLR. Conditioning with CSE did not effect cytokine (IL-10, IL-6, or IL-12) production from immature DCs, but significantly inhibited IL-12p70 release by LPS-matured DCs. In contrast, IL-10 secretion by LPS-activated CSE-conditioned DCs was enhanced when compared with control DCs. CSE also induced cyclooxygenase-2 protein levels in maturing DCs and significantly augmented endogenous PGE2 release. Conditioning of DCs with CSE also suppressed LPS-mediated induction of CD40, CD80, and CD86, and suppressed maturation-associated CCR7 expression. Although CSE has been reported to induce apoptosis of fibroblasts and epithelial cells, the immunomodulatory effects observed with CSE were not due to diminished DC viability. The effects of CSE on DC function were not exclusively mediated by nicotine, because equivalent, or even higher concentrations of nicotine than those found in CSE, failed to suppress DC-induced T cell priming. These data provide evidence that soluble components extracted from cigarette smoke suppress key DC functions and favor the development of Th-2 immunity.


Journal of Immunology | 2004

B7-H3 Enhances Tumor Immunity In Vivo by Costimulating Rapid Clonal Expansion of Antigen-Specific CD8+ Cytolytic T Cells

Liqun Luo; Andrei I. Chapoval; Dallas B. Flies; Gefeng Zhu; Fumiya Hirano; Shengdian Wang; Julie S. Lau; Haidong Dong; Koji Tamada; Andrew S. Flies; Yang Liu; Lieping Chen

B7-H3 is a B7 family molecule with T cell costimulatory function in vitro. The in vivo role of B7-H3 in the stimulation of tumor immunity is unclear. We report here that expression of B7-H3 by transfection of the mouse P815 tumor line enhances its immunogenicity, leading to the regression of tumors and amplification of a tumor-specific CD8+ CTL response in syngeneic mice. Tumor cells engineered to express B7-H3 elicit a rapid clonal expansion of P1A tumor Ag-specific CD8+ CTL in lymphoid organs in vivo and acquire the ability to directly stimulate T cell growth, division, and development of cytolytic activity in vitro. Our results thus establish a role for B7-H3 in the costimulation of T cell immune responses in vivo.


Gut | 2016

Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue

Gunisha Sagar; Raghuwansh P. Sah; Naureen Javeed; Shamit K. Dutta; Thomas C. Smyrk; Julie S. Lau; Nino Giorgadze; Tamar Tchkonia; James L. Kirkland; Suresh T. Chari; Debabrata Mukhopadhyay

Background and objectives New-onset diabetes and concomitant weight loss occurring several months before the clinical presentation of pancreatic cancer (PC) appear to be paraneoplastic phenomena caused by tumour-secreted products. Our recent findings have shown exosomal adrenomedullin (AM) is important in development of diabetes in PC. Adipose tissue lipolysis might explain early onset weight loss in PC. We hypothesise that lipolysis-inducing cargo is carried in exosomes shed by PC and is responsible for the paraneoplastic effects. Therefore, in this study we investigate if exosomes secreted by PC induce lipolysis in adipocytes and explore the role of AM in PC-exosomes as the mediator of this lipolysis. Design Exosomes from patient-derived cell lines and from plasma of patients with PC and non-PC controls were isolated and characterised. Differentiated murine (3T3-L1) and human adipocytes were exposed to these exosomes to study lipolysis. Glycerol assay and western blotting were used to study lipolysis. Duolink Assay was used to study AM and adrenomedullin receptor (ADMR) interaction in adipocytes treated with exosomes. Results In murine and human adipocytes, we found that both AM and PC-exosomes promoted lipolysis, which was abrogated by ADMR blockade. AM interacted with its receptor on the adipocytes, activated p38 and extracellular signal-regulated (ERK1/2) mitogen-activated protein kinases and promoted lipolysis by phosphorylating hormone-sensitive lipase. PKH67-labelled PC-exosomes were readily internalised into adipocytes and involved both caveolin and macropinocytosis as possible mechanisms for endocytosis. Conclusions PC-secreted exosomes induce lipolysis in subcutaneous adipose tissue; exosomal AM is a candidate mediator of this effect.


Clinical Cancer Research | 2015

Pancreatic cancer-derived exosomes cause paraneoplastic β-cell dysfunction

Naureen Javeed; Gunisha Sagar; Shamit K. Dutta; Thomas C. Smyrk; Julie S. Lau; Santanu Bhattacharya; Mark J. Truty; Gloria M. Petersen; Randal J. Kaufman; Suresh T. Chari; Debabrata Mukhopadhyay

Purpose: Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer–derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. Experimental Methods: We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Results: Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Conclusions: Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin+/CA19-9+ exosomes into circulation that inhibit insulin secretion, likely through adrenomedullin-induced ER stress and failure of the unfolded protein response. Clin Cancer Res; 21(7); 1722–33. ©2014 AACR. See related commentary by Korc, p. 1508


Cancer Research | 2006

Expression and Regulatory Role of GAIP-Interacting Protein GIPC in Pancreatic Adenocarcinoma

Michael H. Muders; Shamit K. Dutta; Ling Wang; Julie S. Lau; Resham Bhattacharya; Thomas C. Smyrk; Suresh T. Chari; Kaustubh Datta; Debabrata Mukhopadhyay

Regulator of G-protein signaling-GAIP-interacting protein COOH terminus (GIPC) is involved in protein trafficking, endocytosis, and receptor clustering and is associated with insulin-like growth factor I receptor (IGF-IR), a receptor important for proliferation and anchorage-independent growth. Here, we described GIPC expression in different human pancreatic adenocarcinoma (PCA) cell lines and we examined the role of GIPC in the regulation of IGF-IR protein levels in PCA. Interestingly, inhibition of GIPC expression by RNA interference led to reduced IGF-IR protein levels and a subsequent decrease in proliferation of PCA cells. We also determined that the PDZ domain of GIPC is essential for the post-translational regulation and the binding of IGF-IR. The importance of GIPC in pancreatic cancer development and progression is supported by tissue microarray data of 300 pancreatic cancer specimens where GIPC is highly expressed in PCA. Taken together, our data suggest that GIPC is a central molecule for the stability of IGF-IR and could be a target for future therapy.


Cancer Research | 2009

Insulin Receptor Substrate-2 Mediated Insulin-like Growth Factor-I Receptor Overexpression in Pancreatic Adenocarcinoma through Protein Kinase Cδ

Junhye Kwon; Susann Stephan; Ananya Mukhopadhyay; Michael H. Muders; Shamit K. Dutta; Julie S. Lau; Debabrata Mukhopadhyay

Pancreatic adenocarcinoma (PCA) is an almost invariably fatal disease. Recently, it has been shown by several groups as well as ours that insulin-like growth factor-I receptor (IGF-IR) overexpression is related to higher proliferation, survival, angiogenesis, and highly invasive pancreatic tumors. Several studies have been carried out to understand the pathways that lead to growth factor-mediated signaling, but the molecular mechanism of receptor overexpression remains mostly unknown. Treatment with neutralizing antibodies or a specific kinase inhibitor against IGF-IR could block the receptor expression in PCA cells. Furthermore, we also showed that insulin receptor substrate (IRS)-2, but not IRS-1, is involved in regulation of IGF-IR expression, which is most likely not transcriptional control. By blocking mammalian target of rapamycin (mTOR) pathway with rapamycin as well as other biochemical analysis, we defined a unique regulation of IGF-IR expression mediated by protein kinase Cdelta (PKCdelta) and mTOR pathway. Moreover, we showed that the down-regulation of IGF-IR expression due to IRS-2 small interfering RNA can be compensated by overexpression of dominant-active mutant of PKCdelta, suggesting that PKCdelta is downstream of IGF-IR/IRS-2 axis. Overall, these findings suggest a novel regulatory role of IRS-2 on the expression of IGF-IR through PKCdelta and mTOR in pancreatic cancer cells.

Collaboration


Dive into the Julie S. Lau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaustubh Datta

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge