Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Schindlbeck is active.

Publication


Featured researches published by Julie Schindlbeck.


Progress in Earth and Planetary Science | 2016

Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment

R. P. Scudder; Richard W. Murray; Julie Schindlbeck; Steffen Kutterolf; Folkmar Hauff; Michael B. Underwood; Samantha Gwizd; Rebecca Lauzon; Claire C. McKinley

Volcanic ash has long been recognized in marine sediment, and given the prevalence of oceanic and continental arc volcanism around the globe in regard to widespread transport of ash, its presence is nearly ubiquitous. However, the presence/absence of very fine-grained ash material, and identification of its composition in particular, is challenging given its broad classification as an “aluminosilicate” component in sediment. Given this challenge, many studies of ash have focused on discrete layers (that is, layers of ash that are of millimeter-to-centimeter or greater thickness, and their respective glass shards) found in sequences at a variety of locations and timescales and how to link their presence with a number of Earth processes. The ash that has been mixed into the bulk sediment, known as dispersed ash, has been relatively unstudied, yet represents a large fraction of the total ash in a given sequence. The application of a combined geochemical and statistical technique has allowed identification of this dispersed ash as part of the original ash contribution to the sediment. In this paper, we summarize the development of these geochemical/statistical techniques and provide case studies from the quantification of dispersed ash in the Caribbean Sea, equatorial Pacific Ocean, and northwest Pacific Ocean. These geochemical studies (and their sedimentological precursors of smear slides) collectively demonstrate that local and regional arc-related ash can be an important component of sedimentary sequences throughout large regions of the ocean.


Geochemistry Geophysics Geosystems | 2014

Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones

R. P. Scudder; Richard W. Murray; Julie Schindlbeck; Steffen Kutterolf; Folkmar Hauff; Claire C. McKinley

We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ~30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as respectively being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149 the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc- and climate-related controls.


Geology | 2015

The Miocene Galápagos ash layer record of Integrated Ocean Drilling Program Site Legs 334 and 344: Ocean-island explosive volcanism during plume-ridge interaction

Julie Schindlbeck; Steffen Kutterolf; Armin Freundt; Susanne M. Straub; Kuo Lung Wang; Marion Jegen; Sidney R. Hemming; A.T. Baxter; M. Sandoval

Drilling at Integrated Ocean Drilling Program Site U1381 on the Cocos Ridge offshore Costa Rica recovered 67 primary Miocene (ca. 8 Ma to ca. 16.5 Ma) marine fallout ash layers. Geochemical, volcanological, and geological criteria link these ashes to Plinian eruptions that carried ash to at least 50–450 km from the Galapagos hotspot. These ash layers are the first documentation of highly explosive Miocene Galapagos hotspot volcanism. This volcanism is bimodal with two-thirds of the tephra layers generated by basaltic magmas (glass compositions <57 wt% SiO2) and one-third by rhyolitic magmas. The temporal distribution of the tephra layers, inferred from sediment accumulation rates calibrated by 40Ar/39Ar and biostratigraphic ages, reveals a distinct increase in eruption frequency and hence increased volcanic activity of the Galapagos hotspot after 14 Ma which we interpret in the context of dynamic interaction between the Galapagos plume and spreading ridge.


Geochemistry Geophysics Geosystems | 2014

Large volume submarine ignimbrites in the Shikoku Basin: An example for explosive volcanism in the Western Pacific during the Late Miocene

Steffen Kutterolf; Julie Schindlbeck; R. P. Scudder; Richard W. Murray; Kevin T. Pickering; Armin Freundt; Shasa Labanieh; Ken Heydolph; Sanny Saito; Hajime Naruse; Michael B. Underwood; Huaichun Wu

During IODP Expedition 322, an interval of Late Miocene (7.6 to ∼9.1 Ma) tuffaceous and volcaniclastic sandstones was discovered in the Shikoku Basin (Site C0011B), Nankai region. This interval consists of bioturbated silty claystone including four 1–7 m thick interbeds of tuffaceous sandstones (TST) containing 57–82% (by volume) pyroclasts. We use major and trace element glass compositions, as well as radiogenic isotope compositions, to show that the tuffaceous sandstones beds derived from single eruptive events, and that the majority (TST 1, 2, 3a) came from different eruptions from a similar source region, which we have identified to be the Japanese mainland, 350 km away. In particular, diagnostic trace element ratios (e.g., Th/La, Sm/La, Rb/Hf, Th/Nb, and U/Th) and isotopic data indicate a marked contribution from a mantle source beneath continental crust, which is most consistent with a Japanese mainland source and likely excludes the Izu-Bonin island arc and back arc as a source region for the younger TST beds. Nevertheless, some of the chemical data measured on the oldest sandstone bed (TST 3b, Unit IIb) show affinity to or can clearly be attributed to an Izu-Bonin composition. While we cannot completely exclude the possibility that all TST beds derived from unknown and exotic Izu-Bonin source(s), the collected lines of evidence are most consistent with an origin from the paleo-Honshu arc for TST 1 through 3a. We therefore suggest the former collision zone between the Izu-Bonin arc and Honshu paleo-arc as the most likely region where the eruptive products entered the ocean, also concurrent with nearby (∼200 km) possible Miocene source areas for the tuffaceous sandstones at the paleo-NE-Honshu arc. Estimating the distribution area of the tuffaceous sandstones in the Miocene between this source region and the ∼350 km distant Expedition 322, using bathymetric constraints, we calculate that the sandstone beds represent minimum erupted magma volumes between ∼1 and 17 km3 (Dense Rock Equivalent (DRE)). We conclude that several large volume eruptions occurred during the Late Miocene time next to the collision zone of paleo-Honshu and Izu-Bonin arc and covered the entire Philippine Sea plate with meter thick, sheet-like pyroclastic deposits that are now subducted in the Nankai subduction zone.


Geochemistry Geophysics Geosystems | 2016

Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 2. Implications for magma production rates and subduction erosion

Julie Schindlbeck; Steffen Kutterolf; Armin Freundt; Susanne M. Straub; Paola Vannucchi; Guillermo E. Alvarado

Pacific drill sites offshore Central America provide the unique opportunity to study the evolution of large explosive volcanism and the geotectonic evolution of the continental margin back into the Neogene. The temporal distribution of tephra layers established by tephrochonostratigraphy in Part 1 indicates a nearly continuous highly explosive eruption record for the Costa Rican and the Nicaraguan volcanic arc within the last 8 M.y. The widely distributed marine tephra layers comprise the major fraction of the respective erupted tephra volumes and masses thus providing insights into regional and temporal variations of large-magnitude explosive eruptions along the southern Central American Volcanic Arc (CAVA). We observe three pulses of enhanced explosive magmatism between 0-1 Ma at the Cordillera Central, between 1-2 Ma at the Guanacaste and at >3 Ma at the Western Nicaragua segments. Averaged over the long-term the minimum erupted magma flux (per unit arc length) is ∼0.017 g/ms. Tephra ages, constrained by Ar-Ar dating and by correlation with dated terrestrial tephras, yield time-variable accumulation rates of the intercalated pelagic sediments with four prominent phases of peak sedimentation rates that relate to tectonic processes of subduction erosion. The peak rate at >2.3 Ma near Osa particularly relates to initial Cocos Ridge subduction which began at 2.91±0.23 Ma as inferred by the 1.5 M.y. delayed appearance of the OIB geochemical signal in tephras from Barva volcano at 1.42 Ma. Subsequent tectonic re-arrangements probably involved crustal extension on the Guanacaste segment that favored the 2-1 Ma period of unusually massive rhyolite production.


Geochemistry Geophysics Geosystems | 2016

Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 1. Tephra ages and provenance

Julie Schindlbeck; Steffen Kutterolf; Armin Freundt; Guillermo E. Alvarado; Kuo Lung Wang; Susanne M. Straub; Sidney R. Hemming; Matthias Frische; Jon D. Woodhead

We studied the tephra inventory of 18 deep sea drill sites from six DSDP/ODP legs (Legs 84, 138, 170, 202, 205, 206) and two IODP legs (Legs 334 and 344) offshore the southern Central American Volcanic Arc (CAVA). Eight drill sites are located on the incoming Cocos plate and ten drill sites on the continental slope of the Caribbean plate. In total we examined ∼840 ash-bearing horizons and identified ∼650 of these as primary ash beds of which 430 originated from the CAVA. Correlations of ash beds were established between marine cores and with terrestrial tephra deposits, using major and trace element glass compositions with respect to relative stratigraphic order. As a prerequisite for marine-terrestrial correlations we present a new geochemical data set for significant Neogene and Quaternary Costa Rican tephras. Moreover, new Ar/Ar ages for marine tephras have been determined and marine ash beds are also dated using the pelagic sedimentation rates. The resulting correlations and provenance analyses build a tephrochronostratigraphic framework for Costa Rica and Nicaragua that covers the last >8 Myr. We define 39 correlations of marine ash beds to specific tephra formations in Costa Rica and Nicaragua; from the 4.15 Ma Lower Sandillal Ignimbrite to the 3.5 ka Rincon de la Vieja Tephra from Costa Rica, as well as another 32 widely distributed tephra layers for which their specific region of origin along Costa Rica and Nicaragua can be constrained. This article is protected by copyright. All rights reserved.


International Geology Review | 2017

The missing half of the subduction factory: shipboard results from the Izu rear arc, IODP Expedition 350

Cathy J. Busby; Yoshihiko Tamura; Peter Blum; Gilles Guerin; Graham D. M. Andrews; Abigail K. Barker; J. L. R. Berger; Everton Marques Bongiolo; Manuela Bordiga; Susan M. Debari; James B. Gill; C. Hamelin; Jihui Jia; Eleanor H. John; Ann-Sophie Jonas; Martin Jutzeler; Myriam Kars; Zachary A. Kita; Kevin Konrad; Susan H Mahony; Michelangelo Martini; Takashi Miyazaki; Robert J. Musgrave; Débora B. Nascimento; A. R. L. Nichols; J. M. Ribeiro; Tomoki Sato; Julie Schindlbeck; Axel K. Schmitt; Susanne M. Straub

ABSTRACT IODP Expedition 350 was the first to be drilled in the rear part of the Izu-Bonin, although several sites had been drilled in the arc axis to fore-arc region; the scientific objective was to understand the evolution of the Izu rear arc, by drilling a deep-water volcaniclastic section with a long temporal record (Site U1437). The Izu rear arc is dominated by a series of basaltic to dacitic seamount chains up to ~100-km long roughly perpendicular to the arc front. Dredge samples from these are geochemically distinct from arc front rocks, and drilling was undertaken to understand this arc asymmetry. Site U1437 lies in an ~20-km-wide basin between two rear arc seamount chains, ~90-km west of the arc front, and was drilled to 1804 m below the sea floor (mbsf) with excellent recovery. We expected to drill a volcaniclastic apron, but the section is much more mud-rich than expected (~60%), and the remaining fraction of the section is much finer-grained than predicted from its position within the Izu arc, composed half of ashes/tuffs, and half of lapilli tuffs of fine grain size (clasts <3 cm). Volcanic blocks (>6.4 cm) are only sparsely scattered through the lowermost 25% of the section, and only one igneous unit was encountered, a rhyolite peperite intrusion at ~1390 mbsf. The lowest biostratigaphic datum is at 867 mbsf (~6.5 Ma), the lowest palaeomagnetic datum is at ~1300 mbsf (~9 Ma), and the rhyolite peperite at ~1390 mbsf has yielded a U–Pb zircon concordia intercept age of (13.6 + 1.6/−1.7) Ma. Both arc front and rear arc sources contributed to the fine-grained (distal) tephras of the upper 1320 m, but the coarse-grained (proximal) volcaniclastics in the lowest 25% of the section are geochemically similar to the arc front, suggesting arc asymmetry is not recorded in rocks older than ~13 Ma.


International Geology Review | 2018

Depositional setting, provenance, and tectonic-volcanic setting of Eocene–Recent deep-sea sediments of the oceanic Izu–Bonin forearc, northwest Pacific (IODP Expedition 352)

Alastair H. F. Robertson; Steffen Kutterolf; A. Avery; A.T. Baxter; Katerina Petronotis; Gary D Acton; Claire Carvallo; Julie Schindlbeck

ABSTRACT New biostratigraphical, geochemical, and magnetic evidence is synthesized with IODP Expedition 352 shipboard results to understand the sedimentary and tectono-magmatic development of the Izu–Bonin outer forearc region. The oceanic basement of the Izu–Bonin forearc was created by supra-subduction zone seafloor spreading during early Eocene (c. 50–51 Ma). Seafloor spreading created an irregular seafloor topography on which talus locally accumulated. Oxide-rich sediments accumulated above the igneous basement by mixing of hydrothermal and pelagic sediment. Basaltic volcanism was followed by a hiatus of up to 15 million years as a result of topographic isolation or sediment bypassing. Variably tuffaceous deep-sea sediments were deposited during Oligocene to early Miocene and from mid-Miocene to Pleistocene. The sediments ponded into extensional fault-controlled basins, whereas condensed sediments accumulated on a local basement high. Oligocene nannofossil ooze accumulated together with felsic tuff that was mainly derived from the nearby Izu–Bonin arc. Accumulation of radiolarian-bearing mud, silty clay, and hydrogenous metal oxides beneath the carbonate compensation depth (CCD) characterized the early Miocene, followed by middle Miocene–Pleistocene increased carbonate preservation, deepened CCD and tephra input from both the oceanic Izu–Bonin arc and the continental margin Honshu arc. The Izu–Bonin forearc basement formed in a near-equatorial setting, with late Mesozoic arc remnants to the west. Subduction-initiation magmatism is likely to have taken place near a pre-existing continent–oceanic crust boundary. The Izu–Bonin arc migrated northward and clockwise to collide with Honshu by early Miocene, strongly influencing regional sedimentation.


Geochemistry Geophysics Geosystems | 2017

Tephrostratigraphy and Provenance From IODP Expedition 352, Izu-Bonin arc: Tracing Tephra Sources and Volumes From the Oligocene to the Recent

Steffen Kutterolf; Julie Schindlbeck; Alastair H. F. Robertson; A. Avery; A.T. Baxter; Katerina Petronotis; Kuo Lung Wang

Provenance studies of widely distributed tephras, integrated within a well-defined temporal framework, are important to deduce systematic changes in the source, scale, distribution and changes in regional explosive volcanism. Here, we establish a robust tephro-chronostratigraphy for a total of 157 marine tephra layers collected during IODP Expedition 352. We infer at least three major phases of highly explosive volcanism during Oligocene to Pleistocene time. Provenance analysis based on glass composition assigns 56 of the tephras to a Japan source, including correlations with 12 major and widespread tephra layers resulting from individual eruptions in Kyushu, Central Japan and North Japan between 115 ka and 3.5 Ma. The remaining 101 tephras are assigned to four source regions along the Izu-Bonin arc. One, of exclusively Oligocene age, is proximal to the Bonin Ridge islands; two reflect eruptions within the volcanic front and back-arc of the central Izu-Bonin arc, and a fourth region corresponds to the Northern Izu-Bonin arc source. First-order volume estimates imply eruptive magnitudes ranging from 6.3 to 7.6 for Japan-related eruptions and between 5.5 and 6.5 for IBM eruptions. Our results suggest tephras between 30 and 22 Ma that show a subtly different Izu-Bonin chemical signature compared to the recent arc. After a ∼11 m.y. gap in eruption, tephra supply from the Izu-Bonin arc predominates from 15 to 5 Ma, and finally a subequal mixture of tephra sources from the (palaeo)Honshu and Izu-Bonin arcs occurs within the last ∼5 Ma.


Scientific Reports | 2018

100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific

Julie Schindlbeck; Marion Jegen; Armin Freundt; Steffen Kutterolf; Susanne M. Straub; Maryline J. Mleneck-Vautravers; Jerry F. McManus

It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth’s climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ18O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ18O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7–1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ18O record diminishes, while the tephra record maintains its strong 100 kyr periodicity.

Collaboration


Dive into the Julie Schindlbeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy J. Busby

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael B. Underwood

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiko Tamura

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge