Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Seibt is active.

Publication


Featured researches published by Julie Seibt.


The EMBO Journal | 2004

Sequential phases of cortical specification involve Neurogenin‐dependent and ‐independent pathways

Carol Schuurmans; Olivier Armant; Marta Nieto; Jan M Stenman; Olivier Britz; Natalia Klenin; Craig E. Brown; Lisa-Marie Langevin; Julie Seibt; Hua Tang; James M. Cunningham; Richard H. Dyck; Christopher A. Walsh; Kenny Campbell; Franck Polleux; François Guillemot

Neocortical projection neurons, which segregate into six cortical layers according to their birthdate, have diverse morphologies, axonal projections and molecular profiles, yet they share a common cortical regional identity and glutamatergic neurotransmission phenotype. Here we demonstrate that distinct genetic programs operate at different stages of corticogenesis to specify the properties shared by all neocortical neurons. Ngn1 and Ngn2 are required to specify the cortical (regional), glutamatergic (neurotransmitter) and laminar (temporal) characters of early‐born (lower‐layer) neurons, while simultaneously repressing an alternative subcortical, GABAergic neuronal phenotype. Subsequently, later‐born (upper‐layer) cortical neurons are specified in an Ngn‐independent manner, requiring instead the synergistic activities of Pax6 and Tlx, which also control a binary choice between cortical/glutamatergic and subcortical/GABAergic fates. Our study thus reveals an unanticipated heterogeneity in the genetic mechanisms specifying the identity of neocortical projection neurons.


Neuron | 2003

Area Specificity and Topography of Thalamocortical Projections Are Controlled by ephrin/Eph Genes

Audrey Dufour; Julie Seibt; Lara Passante; Vanessa Depaepe; Thomas Ciossek; Jonas Frisén; Klas Kullander; John G. Flanagan; Franck Polleux; Pierre Vanderhaeghen

The mechanisms generating precise connections between specific thalamic nuclei and cortical areas remain poorly understood. Using axon tracing analysis of ephrin/Eph mutant mice, we provide in vivo evidence that Eph receptors in the thalamus and ephrins in the cortex control intra-areal topographic mapping of thalamocortical (TC) axons. In addition, we show that the same ephrin/Eph genes unexpectedly control the inter-areal specificity of TC projections through the early topographic sorting of TC axons in an intermediate target, the ventral telencephalon. Our results constitute the first identification of guidance cues involved in inter-areal specificity of TC projections and demonstrate that the same set of mapping labels is used differentially for the generation of topographic specificity of TC projections between and within individual cortical areas.


Neuron | 2009

Mechanisms of sleep-dependent consolidation of cortical plasticity.

Sara J. Aton; Julie Seibt; Michelle Dumoulin; Sushil K. Jha; Nicholas A. Steinmetz; Tammi Coleman; Nirinjini Naidoo; Marcos G. Frank

Sleep is thought to consolidate changes in synaptic strength, but the underlying mechanisms are unknown. We investigated the cellular events involved in this process during ocular dominance plasticity (ODP)-a canonical form of in vivo cortical plasticity triggered by monocular deprivation (MD) and consolidated by sleep via undetermined, activity-dependent mechanisms. We find that sleep consolidates ODP primarily by strengthening cortical responses to nondeprived eye stimulation. Consolidation is inhibited by reversible, intracortical antagonism of NMDA receptors (NMDARs) or cAMP-dependent protein kinase (PKA) during post-MD sleep. Consolidation is also associated with sleep-dependent increases in the activity of remodeling neurons and in the phosphorylation of proteins required for potentiation of glutamatergic synapses. These findings demonstrate that synaptic strengthening via NMDAR and PKA activity is a key step in sleep-dependent consolidation of ODP.


Neuron | 2003

Neurogenin2 Specifies the Connectivity of Thalamic Neurons by Controlling Axon Responsiveness to Intermediate Target Cues

Julie Seibt; Carol Schuurmans; Gérard Gradwhol; Colette Dehay; Pierre Vanderhaeghen; François Guillemot; Franck Polleux

Many lines of evidence indicate that important traits of neuronal phenotype, such as cell body position and neurotransmitter expression, are specified through complex interactions between extrinsic and intrinsic genetic determinants. However, the molecular mechanisms specifying neuronal connectivity are less well understood at the transcriptional level. Here we demonstrate that the bHLH transcription factor Neurogenin2 cell autonomously specifies the projection of thalamic neurons to frontal cortical areas. Unexpectedly, Ngn2 determines the projection of thalamic neurons to specific cortical domains by specifying the responsiveness of their axons to cues encountered in an intermediate target, the ventral telencephalon. Our results thus demonstrate that in parallel to their well-documented proneural function, bHLH transcription factors also contribute to the specification of neuronal connectivity in the mammalian brain.


Current Biology | 2012

Protein Synthesis during Sleep Consolidates Cortical Plasticity In Vivo

Julie Seibt; Michelle Dumoulin; Sara J. Aton; Tammi Coleman; Adam J. Watson; Nirinjini Naidoo; Marcos G. Frank

Sleep consolidates experience-dependent brain plasticity, but the precise cellular mechanisms mediating this process are unknown [1]. De novo cortical protein synthesis is one possible mechanism. In support of this hypothesis, sleep is associated with increased brain protein synthesis [2, 3] and transcription of messenger RNAs (mRNAs) involved in protein synthesis regulation [4, 5]. Protein synthesis in turn is critical for memory consolidation and persistent forms of plasticity in vitro and in vivo [6, 7]. However, it is unknown whether cortical protein synthesis in sleep serves similar functions. We investigated the role of protein synthesis in the sleep-dependent consolidation of a classic form of cortical plasticity in vivo (ocular dominance plasticity, ODP; [8, 9]) in the cat visual cortex. We show that intracortical inhibition of mammalian target of rapamycin (mTOR)-dependent protein synthesis during sleep abolishes consolidation but has no effect on plasticity induced during wakefulness. Sleep also promotes phosphorylation of protein synthesis regulators (i.e., 4E-BP1 and eEF2) and the translation (but not transcription) of key plasticity related mRNAs (ARC and BDNF). These findings show that sleep promotes cortical mRNA translation. Interruption of this process has functional consequences, because it abolishes the consolidation of experience in the cortex.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons

Sara J. Aton; Christopher Broussard; Michelle Dumoulin; Julie Seibt; Adam J. Watson; Tammi Coleman; Marcos G. Frank

Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing–dependent depression of open-eye–biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation—evident only after post-MD sleep—are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40–300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye–biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep.


Science Advances | 2015

Rapid eye movement sleep promotes cortical plasticity in the developing brain

Michelle C. Dumoulin Bridi; Sara J. Aton; Julie Seibt; Leslie Renouard; Tammi Coleman; Marcos G. Frank

Rapid eye movement sleep plays a critical role in shaping developing circuits in the cerebral cortex. Rapid eye movement sleep is maximal during early life, but its function in the developing brain is unknown. We investigated the role of rapid eye movement sleep in a canonical model of developmental plasticity in vivo (ocular dominance plasticity in the cat) induced by monocular deprivation. Preventing rapid eye movement sleep after monocular deprivation reduced ocular dominance plasticity and inhibited activation of a kinase critical for this plasticity (extracellular signal–regulated kinase). Chronic single-neuron recording in freely behaving cats further revealed that cortical activity during rapid eye movement sleep resembled activity present during monocular deprivation. This corresponded to times of maximal extracellular signal–regulated kinase activation. These findings indicate that rapid eye movement sleep promotes molecular and network adaptations that consolidate waking experience in the developing brain.


PLOS ONE | 2009

The sedating antidepressant trazodone impairs sleep-dependent cortical plasticity.

Sara J. Aton; Julie Seibt; Michelle Dumoulin; Tammi Coleman; Mia Shiraishi; Marcos G. Frank

Background Recent findings indicate that certain classes of hypnotics that target GABAA receptors impair sleep-dependent brain plasticity. However, the effects of hypnotics acting at monoamine receptors (e.g., the antidepressant trazodone) on this process are unknown. We therefore assessed the effects of commonly-prescribed medications for the treatment of insomnia (trazodone and the non-benzodiazepine GABAA receptor agonists zaleplon and eszopiclone) in a canonical model of sleep-dependent, in vivo synaptic plasticity in the primary visual cortex (V1) known as ocular dominance plasticity. Methodology/Principal Findings After a 6-h baseline period of sleep/wake polysomnographic recording, cats underwent 6 h of continuous waking combined with monocular deprivation (MD) to trigger synaptic remodeling. Cats subsequently received an i.p. injection of either vehicle, trazodone (10 mg/kg), zaleplon (10 mg/kg), or eszopiclone (1–10 mg/kg), and were allowed an 8-h period of post-MD sleep before ocular dominance plasticity was assessed. We found that while zaleplon and eszopiclone had profound effects on sleeping cortical electroencephalographic (EEG) activity, only trazodone (which did not alter EEG activity) significantly impaired sleep-dependent consolidation of ocular dominance plasticity. This was associated with deficits in both the normal depression of V1 neuronal responses to deprived-eye stimulation, and potentiation of responses to non-deprived eye stimulation, which accompany ocular dominance plasticity. Conclusions/Significance Taken together, our data suggest that the monoamine receptors targeted by trazodone play an important role in sleep-dependent consolidation of synaptic plasticity. They also demonstrate that changes in sleep architecture are not necessarily reliable predictors of how hypnotics affect sleep-dependent neural functions.


PLOS ONE | 2012

Expression at the imprinted dlk1-gtl2 locus is regulated by proneural genes in the developing telencephalon.

Julie Seibt; Olivier Armant; Anne Le Digarcher; Diogo S. Castro; Vidya Ramesh; Laurent Journot; François Guillemot; Pierre Vanderhaeghen; Tristan Bouschet

Imprinting is an epigenetic mechanism that restrains the expression of about 100 genes to one allele depending on its parental origin. Several imprinted genes are implicated in neurodevelopmental brain disorders, such as autism, Angelman, and Prader-Willi syndromes. However, how expression of these imprinted genes is regulated during neural development is poorly understood. Here, using single and double KO animals for the transcription factors Neurogenin2 (Ngn2) and Achaete-scute homolog 1 (Ascl1), we found that the expression of a specific subset of imprinted genes is controlled by these proneural genes. Using in situ hybridization and quantitative PCR, we determined that five imprinted transcripts situated at the Dlk1-Gtl2 locus (Dlk1, Gtl2, Mirg, Rian, Rtl1) are upregulated in the dorsal telencephalon of Ngn2 KO mice. This suggests that Ngn2 influences the expression of the entire Dlk1-Gtl2 locus, independently of the parental origin of the transcripts. Interestingly 14 other imprinted genes situated at other imprinted loci were not affected by the loss of Ngn2. Finally, using Ngn2/Ascl1 double KO mice, we show that the upregulation of genes at the Dlk1-Gtl2 locus in Ngn2 KO animals requires a functional copy of Ascl1. Our data suggest a complex interplay between proneural genes in the developing forebrain that control the level of expression at the imprinted Dlk1-Gtl2 locus (but not of other imprinted genes). This raises the possibility that the transcripts of this selective locus participate in the biological effects of proneural genes in the developing telencephalon.


Communicative & Integrative Biology | 2012

Translation regulation in sleep: Making experience last

Julie Seibt; Marcos G. Frank

Sleep improves cognition and is necessary for normal brain plasticity, but the precise cellular and molecular mechanisms mediating these effects are unknown. At the molecular level, experience-dependent synaptic plasticity triggers new gene and protein expression necessary for long-lasting changes in synaptic strength.1 In particular, translation of mRNAs at remodeling synapses is emerging as an important mechanism in persistent forms of synaptic plasticity in vitro and certain forms of memory consolidation.2 We have previously shown that sleep is required for the consolidation of a canonical model of in vivo plasticity (i.e., ocular dominance plasticity [ODP] in the developing cat).3 Using this model, we recently showed that protein synthesis during sleep participates in the consolidation process. We demonstrate that activation of the mammalian target of rapamycin [mTOR] pathway, an important regulator of translation initiation,4 is necessary for sleep-dependent ODP consolidation and that sleep promotes translation (but not transcription) of proteins essential for synaptic plasticity (i.e., ARC and BDNF). Our study thus reveals a previously unknown mechanism operating during sleep that consolidates cortical plasticity in vivo.

Collaboration


Dive into the Julie Seibt's collaboration.

Top Co-Authors

Avatar

Marcos G. Frank

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tammi Coleman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michelle Dumoulin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sushil K. Jha

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Cindy E. Nuss

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James C. Barrow

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John J. Renger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kenneth S. Koblan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Susan L. Garson

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge