Julie Smet
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Smet.
Journal of Clinical Investigation | 2010
Menno C. van Zelm; Julie Smet; Brigitte Adams; Françoise Mascart; Liliane Schandené; Françoise Janssen; Alina Ferster; Chiung-Chi Kuo; Shoshana Levy; Jacques J.M. van Dongen; Mirjam van der Burg
Antibody deficiencies constitute the largest group of symptomatic primary immunodeficiency diseases. In several patients, mutations in CD19 have been found to underlie disease, demonstrating the critical role for the protein encoded by this gene in antibody responses; CD19 functions in a complex with CD21, CD81, and CD225 to signal with the B cell receptor upon antigen recognition. We report here a patient with severe nephropathy and profound hypogammaglobulinemia. The immunodeficiency was characterized by decreased memory B cell numbers, impaired specific antibody responses, and an absence of CD19 expression on B cells. The patient had normal CD19 alleles but carried a homozygous CD81 mutation resulting in a complete lack of CD81 expression on blood leukocytes. Retroviral transduction and glycosylation experiments on EBV-transformed B cells from the patient revealed that CD19 membrane expression critically depended on CD81. Similar to CD19-deficient patients, CD81-deficient patients had B cells that showed impaired activation upon stimulation via the B cell antigen receptor but no overt T cell subset or function defects. In this study, we present what we believe to be the first antibody deficiency syndrome caused by a mutation in the CD81 gene and consequent disruption of the CD19 complex on B cells. These findings may contribute to unraveling the genetic basis of antibody deficiency syndromes and the nonredundant functions of CD81 in humans.
Vaccine | 2013
Kaatje Smits; Gaëlle Pottier; Julie Smet; Violette Dirix; Françoise Vermeulen; Iris De Schutter; Maria Carollo; Camille Locht; Clara M. Ausiello; Françoise Mascart
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Human Molecular Genetics | 2011
Menno C. van Zelm; Julie Smet; Mirjam van der Burg; Alina Ferster; Phu-Quoc Le; Liliane Schandené; Jacques J.M. van Dongen; Françoise Mascart
Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patients B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patients B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.
Clinical Immunology | 2011
Julie Smet; Françoise Mascart; Liliane Schandené
Detailed phenotypic characterization of B cell subpopulations is of utmost importance for the diagnosis and management of humoral immunodeficiencies, as they are used for classification of common variable immunodeficiencies. Since age-specific reference values remain scarce in the literature, we analysed by flow cytometry the proportions and absolute values of total, memory, switched memory and CD21(-/low) B cells in blood samples from 168 healthy children (1 day to 18 years) with special attention to the different subpopulations of CD21(low) B cells. The percentages of total memory B cells and their subsets significantly increased up to 5-10 years. In contrast, the percentages of immature CD21(-) B cells and of immature transitional CD21(low)CD38(hi) B cells decreased progressively with age, whereas the percentage of CD21(low) CD38(low) B cells remained stable during childhood. Our data stress the importance of age-specific reference values for the correct interpretation of B cell subsets in children as a diagnostic tool in immunodeficiencies.
PLOS ONE | 2014
Iris De Schutter; Anne Vergison; David Tuerlinckx; Marc Raes; Julie Smet; Pierre R. Smeesters; Jan Verhaegen; Françoise Mascart; Filip Surmont; Anne Malfroot
Community-acquired pneumonia (CAP) is a major cause of morbidity in children. This study estimated the proportion of children with pneumococcal CAP among children hospitalised with CAP in Belgium and describes the causative serotype distribution after implementation of the 7-valent pneumococcal conjugate vaccine. Children 0–14 years hospitalised with X-ray-confirmed CAP were prospectively enrolled in a multicentre observational study. Acute and convalescent blood samples were collected. Pneumococcal aetiology was assessed by conventional methods (blood or pleural fluid cultures with Quellung reaction capsular typing or polymerase chain reaction [PCR] in pleural fluid), and recently developed methods (real-time PCR in blood and World Health Organization-validated serotype-specific serology). A total of 561 children were enrolled. Pneumococcal aetiology was assessed by conventional methods in 539, serology in 171, and real-time PCR in blood in 154. Pneumococcal aetiology was identified in 12.2% (66/539) of the children by conventional methods alone but in 73.9% by the combination of conventional and recently developed methods. The pneumococcal detection rate adjusted for the whole study population was 61.7%. Serotypes 1 (42.3%), 5 (16.0%), and 7F(7A) (12.8%) were predominant. In conclusion, Streptococcus pneumoniae remains the predominant bacteria in children hospitalised for CAP in Belgium after implementation of 7-valent pneumococcal conjugate vaccine, with non-vaccine-serotypes accounting for the majority of cases. The use of recently developed methods improves diagnosis of pneumococcal aetiology.
Pediatric Infectious Disease Journal | 2013
David Tuerlinckx; Julie Smet; Iris De Schutter; Jacques Jamart; Anne Vergison; Marc Raes; Pierre R. Smeesters; Jan Verhaegen; Filip Surmont; Anne Malfroot; Françoise Mascart
Background: The etiologic diagnosis of community-acquired pneumonia (CAP) remains challenging in children because blood cultures have low sensitivity. Novel approaches are needed to confirm the role of Streptococcus pneumoniae. Methods: In this study, pneumococcal etiology was determined by serology using a subset of blood samples collected during a prospective multicentre observational study of children <15 years of age hospitalized in Belgium with radiogram-confirmed CAP. Blood samples were collected at admission and 3–4 weeks later. Pneumococcal (P)-CAP was defined in the presence of a positive blood or pleural fluid culture. Serotyping of S. pneumoniae isolates was done with the Quellung reaction. Serological diagnosis was assessed for 9 serotypes using World Health Organization–validated IgG and IgA serotype-specific enzyme-linked immunosorbent assays (ELISAs). Results: Paired admission/convalescent sera from 163 children were evaluated by ELISA (35 with proven P-CAP and 128 with nonproven P-CAP). ELISA detected pneumococci in 82.8% of patients with proven P-CAP. The serotypes identified were the same as with the Quellung reaction in 82% and 59% of cases by IgG ELISA and IgA ELISA, respectively. Overall, ELISA identified a pneumococcal etiology in 55% of patients with nonproven P-CAP. Serotypes 1 (51.6%), 7F (19%) and 5 (15.7%) were the most frequent according to IgG ELISA. Conclusions: In conclusion, the serological assay allows recognition of pneumococcal origin in 55% of CAP patients with negative culture. This assay should improve the diagnosis of P-CAP in children and could be a useful tool for future epidemiological studies on childhood CAP etiology.
European Journal of Internal Medicine | 2009
Kaoutar Hafraoui; Michel Moutschen; Julie Smet; Françoise Mascart; Nicole Schaaf-Lafontaine; Georges Fillet
BACKGROUND Persistent polyclonal B cell lymphocytosis (PPBL) is a rare condition characterized by increased IgM and large excess of B cells with an IgD(+) CD27(+) phenotype. In normal individuals, these cells play a central role in the defense against pneumococcal infection. So far, few studies have characterized humoral immune responses in PPBL patients. We therefore measured IgG directed against S. pneumoniae antigens in a 51 yr-old woman with PPBL before and after vaccination with a pneumococcal 23-valent polysaccharide vaccine. METHODS Antibodies against pneumococcal antigens were measured first with an overall immunoassay using microplates coated with the 23-valent pneumococcal vaccine. A serotype-specific test was also performed according to the WHO consensus protocol. RESULTS Despite a large number of IgD(+) CD27(+) cells, our patient had low baseline titers of IgG directed against pneumococcal antigens and did not significantly respond to a 23-valent polysaccharide vaccine against S. pneumoniae. On the contrary, she had good titers of IgG directed against tetanus toxoid. CONCLUSION IgM(+) IgD(+) CD27(+) cells which accumulate in this patient with typical PPBL patient failed to perform IgG isotype switch after a polysaccharide vaccine. The potential mechanisms and relationships with the main features of PPBL are discussed. Further studies on a larger number of similar patients are needed.
Blood | 2008
Menno C. van Zelm; Julie Smet; Françoise Mascart; Brigitte Adams; Liliane Schandené; Françoise Janssen; Alina Ferster; Jacques J.M. van Dongen; Maria van der Burg
Archive | 2008
Julie Smet; Menno C. van Zelm; Mirjam van der Burg; Alina Ferster; Phu-Quoc Le; Jacques J.M. van Dongen; Françoise Mascart
M S-medecine Sciences | 2011
Julie Smet; Menno C. van Zelm; Liliane Schandené; Brigitte Adams; Mirjam van der Burg; Françoise Mascart