Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Teruya-Feldstein is active.

Publication


Featured researches published by Julie Teruya-Feldstein.


Nature | 2007

Tumour invasion and metastasis initiated by microRNA-10b in breast cancer

Li Ma; Julie Teruya-Feldstein; Robert A. Weinberg

MicroRNAs have been implicated in regulating diverse cellular pathways. Although there is emerging evidence that some microRNAs can function as oncogenes or tumour suppressors, the role of microRNAs in mediating cancer metastasis remains unexplored. Here we show, using a combination of mouse and human cells, that microRNA-10b (miR-10b) is highly expressed in metastatic breast cancer cells and positively regulates cell migration and invasion. Overexpression of miR-10b in otherwise non-metastatic breast tumours initiates robust invasion and metastasis. Expression of miR-10b is induced by the transcription factor Twist, which binds directly to the putative promoter of mir-10b (MIRN10B). The miR-10b induced by Twist proceeds to inhibit translation of the messenger RNA encoding homeobox D10, resulting in increased expression of a well-characterized pro-metastatic gene, RHOC. Significantly, the level of miR-10b expression in primary breast carcinomas correlates with clinical progression. These findings suggest the workings of an undescribed regulatory pathway, in which a pleiotropic transcription factor induces expression of a specific microRNA, which suppresses its direct target and in turn activates another pro-metastatic gene, leading to tumour cell invasion and metastasis.


Journal of Clinical Investigation | 2008

Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer

Arkaitz Carracedo; Li Ma; Julie Teruya-Feldstein; Federico Rojo; Leonardo Salmena; Andrea Alimonti; Ainara Egia; Atsuo T. Sasaki; George Thomas; Sara C. Kozma; Antonella Papa; Caterina Nardella; Lewis C. Cantley; José Baselga; Pier Paolo Pandolfi

Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.


Nature Biotechnology | 2010

Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model

Li Ma; Ferenc Reinhardt; Elizabeth Pan; Jürgen Soutschek; Balkrishen Bhat; Eric G. Marcusson; Julie Teruya-Feldstein; George W. Bell; Robert A. Weinberg

MicroRNAs (miRNAs) are increasingly implicated in the regulation of metastasis. Despite their potential as targets for anti-metastatic therapy, miRNAs have only been silenced in normal tissues of rodents and nonhuman primates. Therefore, the development of effective approaches for sequence-specific inhibition of miRNAs in tumors remains a scientific and clinical challenge. Here we show that systemic treatment of tumor-bearing mice with miR-10b antagomirs—a class of chemically modified anti-miRNA oligonucleotide—suppresses breast cancer metastasis. Both in vitro and in vivo, silencing of miR-10b with antagomirs significantly decreases miR-10b levels and increases the levels of a functionally important miR-10b target, Hoxd10. Administration of miR-10b antagomirs to mice bearing highly metastatic cells does not reduce primary mammary tumor growth but markedly suppresses formation of lung metastases in a sequence-specific manner. The miR-10b antagomir, which is well tolerated by normal animals, appears to be a promising candidate for the development of new anti-metastasis agents.


Cell | 2007

Ubiquitination Regulates PTEN Nuclear Import and Tumor Suppression

Lloyd C. Trotman; Xinjiang Wang; Andrea Alimonti; Zhenbang Chen; Julie Teruya-Feldstein; Haijuan Yang; Nikola P. Pavletich; Brett S. Carver; Carlos Cordon-Cardo; Hediye Erdjument-Bromage; Paul Tempst; Sung Gil Chi; Hyo Jong Kim; Tom Misteli; Xuejun Jiang; Pier Paolo Pandolfi

The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.


Nature | 2008

PML targeting eradicates quiescent leukaemia-initiating cells

Keisuke Ito; Rosa Bernardi; Alessandro Morotti; Sahoko Matsuoka; Giuseppe Saglio; Yasuo Ikeda; Jacalyn Rosenblatt; David Avigan; Julie Teruya-Feldstein; Pier Paolo Pandolfi

The existence of a small population of ‘cancer-initiating cells’ responsible for tumour maintenance has been firmly demonstrated in leukaemia. This concept is currently being tested in solid tumours. Leukaemia-initiating cells, particularly those that are in a quiescent state, are thought to be resistant to chemotherapy and targeted therapies, resulting in disease relapse. Chronic myeloid leukaemia is a paradigmatic haematopoietic stem cell disease in which the leukaemia-initiating-cell pool is not eradicated by current therapy, leading to disease relapse on drug discontinuation. Here we define the critical role of the promyelocytic leukaemia protein (PML) tumour suppressor in haematopoietic stem cell maintenance, and present a new therapeutic approach for targeting quiescent leukaemia-initiating cells and possibly cancer-initiating cells by pharmacological inhibition of PML.


Cancer Cell | 2011

SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.

Lydia W.S. Finley; Arkaitz Carracedo; Jaewon Lee; Amanda Souza; Ainara Egia; Jiangwen Zhang; Julie Teruya-Feldstein; Paula I. Moreira; Sandra M. Cardoso; Clary B. Clish; Pier Paolo Pandolfi; Marcia C. Haigis

Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1α stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1α target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression.


Nature | 2005

Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants.

Michael T. Hemann; Anka Bric; Julie Teruya-Feldstein; Andreas Herbst; Jonas A. Nilsson; Carlos Cordon-Cardo; John L. Cleveland; William P. Tansey; Scott W. Lowe

The c-Myc oncoprotein promotes proliferation and apoptosis, such that mutations that disable apoptotic programmes often cooperate with MYC during tumorigenesis. Here we report that two common mutant MYC alleles derived from human Burkitts lymphoma uncouple proliferation from apoptosis and, as a result, are more effective than wild-type MYC at promoting B cell lymphomagenesis in mice. Mutant MYC proteins retain their ability to stimulate proliferation and activate p53, but are defective at promoting apoptosis due to a failure to induce the BH3-only protein Bim (a member of the B cell lymphoma 2 (Bcl2) family) and effectively inhibit Bcl2. Disruption of apoptosis through enforced expression of Bcl2, or loss of either Bim or p53 function, enables wild-type MYC to produce lymphomas as efficiently as mutant MYC. These data show how parallel apoptotic pathways act together to suppress MYC-induced transformation, and how mutant MYC proteins, by selectively disabling a p53-independent pathway, enable tumour cells to evade p53 action during lymphomagenesis.


Nature | 2006

PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR

Rosa Bernardi; Ilhem Guernah; David K. Jin; Silvia Grisendi; Andrea Alimonti; Julie Teruya-Feldstein; Carlos Cordon-Cardo; M. Celeste Simon; Shahin Rafii; Pier Paolo Pandolfi

Loss of the promyelocytic leukaemia (PML) tumour suppressor has been observed in several human cancers. The tumour-suppressive function of PML has been attributed to its ability to induce growth arrest, cellular senescence and apoptosis. Here we identify PML as a critical inhibitor of neoangiogenesis (the formation of new blood vessels) in vivo, in both ischaemic and neoplastic conditions, through the control of protein translation. We demonstrate that in hypoxic conditions PML acts as a negative regulator of the synthesis rate of hypoxia-inducible factor 1α (HIF-1α) by repressing mammalian target of rapamycin (mTOR). PML physically interacts with mTOR and negatively regulates its association with the small GTPase Rheb by favouring mTOR nuclear accumulation. Notably, Pml-/- cells and tumours display higher sensitivity both in vitro and in vivo to growth inhibition by rapamycin, and lack of PML inversely correlates with phosphorylation of ribosomal protein S6 and tumour angiogenesis in mouse and human tumours. Thus, our findings identify PML as a novel suppressor of mTOR and neoangiogenesis.


Nature | 2010

Skp2 targeting suppresses tumorigenesis by Arf-p53 -independent cellular senescence

Hui Kuan Lin; Zhenbang Chen; Guocan Wang; Caterina Nardella; Szu Wei Lee; Chan Hsin Chan; Wei Lei Yang; Jing Wang; Ainara Egia; Keiichi I. Nakayama; Carlos Cordon-Cardo; Julie Teruya-Feldstein; Pier Paolo Pandolfi

Cellular senescence has been recently shown to have an important role in opposing tumour initiation and promotion. Senescence induced by oncogenes or by loss of tumour suppressor genes is thought to critically depend on induction of the p19Arf–p53 pathway. The Skp2 E3-ubiquitin ligase can act as a proto-oncogene and its aberrant overexpression is frequently observed in human cancers. Here we show that although Skp2 inactivation on its own does not induce cellular senescence, aberrant proto-oncogenic signals as well as inactivation of tumour suppressor genes do trigger a potent, tumour-suppressive senescence response in mice and cells devoid of Skp2. Notably, Skp2 inactivation and oncogenic-stress-driven senescence neither elicit activation of the p19Arf–p53 pathway nor DNA damage, but instead depend on Atf4, p27 and p21. We further demonstrate that genetic Skp2 inactivation evokes cellular senescence even in oncogenic conditions in which the p19Arf–p53 response is impaired, whereas a Skp2–SCF complex inhibitor can trigger cellular senescence in p53/Pten-deficient cells and tumour regression in preclinical studies. Our findings therefore provide proof-of-principle evidence that pharmacological inhibition of Skp2 may represent a general approach for cancer prevention and therapy.


Cancer Cell | 2009

Evidence that Inositol Polyphosphate 4-Phosphatase Type II Is a Tumor Suppressor that Inhibits PI3K Signaling

Christina Gewinner; Zhigang C. Wang; Andrea L. Richardson; Julie Teruya-Feldstein; Dariush Etemadmoghadam; David Bowtell; Jordi Barretina; William M. Lin; Lucia E. Rameh; Leonardo Salmena; Pier Paolo Pandolfi; Lewis C. Cantley

We report that knocking down the expression of inositol polyphosphate 4-phosphatase type II (INPP4B) in human epithelial cells, like knockdown of PTEN, resulted in enhanced Akt activation and anchorage-independent growth and enhanced overall motility. In xenograft experiments, overexpression of INPP4B resulted in reduced tumor growth. INPP4B preferentially hydrolyzes phosphatidylinositol-3,4-bisphosphate (PI(3,4)P(2)) with no effect on phosphatidylinositol-3.4.5-triphosphate (PI(3,4,5)P(3)), suggesting that PI(3,4)P(2) and PI(3,4,5)P(3) may cooperate in Akt activation and cell transformation. Dual knockdown of INPP4B and PTEN resulted in cellular senescence. Finally, we found loss of heterozygosity (LOH) at the INPP4B locus in a majority of basal-like breast cancers, as well as in a significant fraction of ovarian cancers, which correlated with lower overall patient survival, suggesting that INPP4B is a tumor suppressor.

Collaboration


Dive into the Julie Teruya-Feldstein's collaboration.

Top Co-Authors

Avatar

Pier Paolo Pandolfi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Zelenetz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Filippa

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elaine S. Jaffe

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig H. Moskowitz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giovanna Tosato

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Fleisher

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carlos Cordon-Cardo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge