Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Tucker is active.

Publication


Featured researches published by Julie Tucker.


Current Opinion in Structural Biology | 1999

Cyclin-dependent kinases: inhibition and substrate recognition

Jane A. Endicott; Martin Noble; Julie Tucker

Four unresolved issues of cyclin-dependent kinase (CDK) regulation have been addressed by structural studies this year - the mechanism of CDK inhibition by members of the INK4 family of CDK inhibitors, consensus substrate sequence recognition by CDKs, the role of the cyclin subunit in substrate recognition and the structural mechanism underlying CDK inhibition by phosphorylation.


Journal of Medicinal Chemistry | 2012

Design and Synthesis of Novel Lactate Dehydrogenase A Inhibitors by Fragment-Based Lead Generation

Claire Brassington; Alexander L. Breeze; Alessandro Caputo; Susan E. Critchlow; G.R. Davies; Louise Goodwin; Giles Hassall; Ryan Greenwood; Geoffrey A. Holdgate; Michael Mrosek; Richard A. Norman; Stuart E. Pearson; Jonathan Tart; Julie Tucker; Martin Vogtherr; David Whittaker; Jonathan Wingfield; Jon Winter; Kevin Hudson

Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate, utilizing NADH as a cofactor. It has been identified as a potential therapeutic target in the area of cancer metabolism. In this manuscript we report our progress using fragment-based lead generation (FBLG), assisted by X-ray crystallography to develop small molecule LDHA inhibitors. Fragment hits were identified through NMR and SPR screening and optimized into lead compounds with nanomolar binding affinities via fragment linking. Also reported is their modification into cellular active compounds suitable for target validation work.


Journal of Biological Chemistry | 2007

How Tyrosine 15 Phosphorylation Inhibits the Activity of Cyclin-dependent Kinase 2-Cyclin A

Julie P. I. Welburn; Julie Tucker; Timothy M. Johnson; Lisa Lindert; Marc Morgan; Antony C. Willis; Martin Noble; Jane A. Endicott

Inhibition of cyclin-dependent kinase 1 (CDK1) activity by Tyr-15 phosphorylation directly regulates entry into mitosis and is an important element in the control of the unperturbed cell cycle. Active site phosphorylation of other members of the CDK family that regulate cell cycle progression instates checkpoints that are fundamental to eukaryotic cell cycle regulation. Kinetic and crystallographic analyses of CDK2-cyclin A complexes reveal that this inhibitory mechanism operates through steric blockade of peptide substrate binding and through the creation of an environment that favors a non-productive conformation of the terminal group of ATP. By contrast, tyrosine phosphorylation of CDK2 alters neither its Km for ATP nor its significant intrinsic ATPase activity. Tyr-15-phosphorylated CDK2 retains trace protein phosphorylation activity that should be considered in quantitative and qualitative cell cycle models.


ACS Chemical Biology | 2013

Aminopyrazinamides: Novel and Specific GyrB Inhibitors that Kill Replicating and Nonreplicating Mycobacterium tuberculosis

Pravin S. Shirude; Prashanti Madhavapeddi; Julie Tucker; Kannan Murugan; Vikas Patil; Halesha D. Basavarajappa; Anandkumar Raichurkar; Vaishali Humnabadkar; Syeed Hussein; Sreevalli Sharma; V. K. Ramya; Chandan Narayan; Tanjore S. Balganesh; Vasan K. Sambandamurthy

Aminopyrazinamides originated from a high throughput screen targeting the Mycobacterium smegmatis (Msm) GyrB ATPase. This series displays chemical tractability, robust structure-activity relationship, and potent antitubercular activity. The crystal structure of Msm GyrB in complex with one of the aminopyrazinamides revealed promising attributes of specificity against other broad spectrum pathogens and selectivity against eukaryotic kinases due to novel interactions at hydrophobic pocket, unlike other known GyrB inhibitors. The aminopyrazinamides display excellent mycobacterial kill under in vitro, intracellular, and hypoxic conditions.


Journal of Medicinal Chemistry | 2015

Small Molecule Binding Sites on the Ras:SOS Complex Can be Exploited for Inhibition of Ras Activation.

J.J.G Winter; M Anderson; K Blades; C Brassington; Alexander L. Breeze; C Chresta; Kevin J. Embrey; G Fairley; P Faulder; M.R.V Finlay; J.G Kettle; T Nowak; R Overman; S.J Patel; P Perkins; L Spadola; J Tart; Julie Tucker; G. Wrigley

Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.


Journal of Medicinal Chemistry | 2013

Thiazolopyridine Ureas as Novel Antitubercular Agents Acting through Inhibition of DNA Gyrase B.

Manoj Kale; Anandkumar Raichurkar; Shahul Hameed P; David Waterson; David C. McKinney; M. R. Manjunatha; Usha Kranthi; Krishna Koushik; Lalit kumar Jena; Vikas Shinde; Suresh Rudrapatna; Shubhada Barde; Vaishali Humnabadkar; Prashanti Madhavapeddi; Halesha D. Basavarajappa; Anirban Ghosh; V. K. Ramya; Supreeth Guptha; Sreevalli Sharma; Prakash Vachaspati; K.N. Mahesh Kumar; Jayashree Giridhar; Jitendar Reddy; Samit Ganguly; Vijaykamal Ahuja; Sheshagiri Gaonkar; C. N. Naveen Kumar; Derek Ogg; Julie Tucker; P. Ann Boriack-Sjodin

A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 μM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.


ACS Medicinal Chemistry Letters | 2014

FGFR1 Kinase Inhibitors: Close Regioisomers Adopt Divergent Binding Modes and Display Distinct Biophysical Signatures.

Tobias Klein; Julie Tucker; Geoffrey A. Holdgate; Richard A. Norman; Alexander L. Breeze

The binding of a ligand to its target protein is often accompanied by conformational changes of both the protein and the ligand. This is of particular interest, since structural rearrangements of the macromolecular target and the ligand influence the free energy change upon complex formation. In this study, we use X-ray crystallography, isothermal titration calorimetry, and surface-plasmon resonance biosensor analysis to investigate the binding of pyrazolylaminopyrimidine inhibitors to FGFR1 tyrosine kinase, an important anticancer target. Our results highlight that structurally close analogs of this inhibitor series interact with FGFR1 with different binding modes, which are a consequence of conformational changes in both the protein and the ligand as well as the bound water network. Together with the collected kinetic and thermodynamic data, we use the protein-ligand crystal structure information to rationalize the observed inhibitory potencies on a molecular level.


Journal of Medicinal Chemistry | 2015

Structure Guided Lead Generation for M. Tuberculosis Thymidylate Kinase (Mtb Tmk): Discovery of 3-Cyanopyridone and 1,6-Naphthyridin-2-One as Potent Inhibitors.

Maruti Naik; Anandkumar Raichurkar; Balachandra Bandodkar; Begur V. Varun; Shantika Bhat; Rajesh Kalkhambkar; Kannan Murugan; Rani Menon; Jyothi Bhat; Beena Paul; Harini Iyer; Syeed Hussein; Julie Tucker; Martin Vogtherr; Kevin J. Embrey; Helen McMiken; Swati Prasad; Adrian Liam Gill; Bheemarao G. Ugarkar; Janani Venkatraman; Jon Read; Manoranjan Panda

M. tuberculosis thymidylate kinase (Mtb TMK) has been shown in vitro to be an essential enzyme in DNA synthesis. In order to identify novel leads for Mtb TMK, we performed a high throughput biochemical screen and an NMR based fragment screen through which we discovered two novel classes of inhibitors, 3-cyanopyridones and 1,6-naphthyridin-2-ones, respectively. We describe three cyanopyridone subseries that arose during our hit to lead campaign, along with cocrystal structures of representatives with Mtb TMK. Structure aided optimization of the cyanopyridones led to single digit nanomolar inhibitors of Mtb TMK. Fragment based lead generation, augmented by crystal structures and the SAR from the cyanopyridones, enabled us to drive the potency of our 1,6-naphthyridin-2-one fragment hit from 500 μM to 200 nM while simultaneously improving the ligand efficiency. Cyanopyridone derivatives containing sulfoxides and sulfones showed cellular activity against M. tuberculosis. To the best of our knowledge, these compounds are the first reports of non-thymidine-like inhibitors of Mtb TMK.


Acta Crystallographica Section D Structural Biology | 2017

Keep it together: restraints in crystallographic refinement of macromolecule–ligand complexes

Roberto A. Steiner; Julie Tucker

An overview of the process of ligand restraint generation for macromolecular crystallographic refinement is given.


Oncotarget | 2017

Structural insights into the enzymatic activity and potential substrate promiscuity of human 3-phosphoglycerate dehydrogenase (PHGDH)

Judith E. Unterlass; Robert J. Wood; Arnaud Baslé; Julie Tucker; Celine Cano; Martin M.E. Noble; Nicola J. Curtin

Cancer cells reprogram their metabolism and energy production to sustain increased growth, enable metastasis and overcome resistance to cancer treatments. Although primary roles for many metabolic proteins have been identified, some are promiscuous in regards to the reaction they catalyze. To efficiently target these enzymes, a good understanding of their enzymatic function and structure, as well as knowledge regarding any substrate or catalytic promiscuity is required. Here we focus on the characterization of human 3-phosphoglycerate dehydrogenase (PHGDH). PHGDH catalyzes the NAD+-dependent conversion of 3-phosphoglycerate to phosphohydroxypyruvate, which is the first step in the de novo synthesis pathway of serine, a critical amino acid for protein and nucleic acid biosynthesis. We have investigated substrate analogues to assess whether PHGDH might possess other enzymatic roles that could explain its occasional over-expression in cancer, as well as to help with the design of specific inhibitors. We also report the crystal structure of the catalytic subunit of human PHGDH, a dimer, solved with bound cofactor in one monomer and both cofactor and L-tartrate in the second monomer. In vitro enzyme activity measurements show that the catalytic subunit of PHGDH is still active and that PHGDH activity could be significantly inhibited with adenosine 5’-diphosphoribose.

Collaboration


Dive into the Julie Tucker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Waddell

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Kate Smith

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Small

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge