Julie Tugend
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Tugend.
Tectonics | 2014
Julie Tugend; Gianreto Manatschal; N. J. Kusznir; Emmanuel Masini; Geoffroy Mohn; I. Thinon
The Bay of Biscay and the Pyrenees correspond to a Lower Cretaceous rift system including both oceanic and hyperextended rift domains. The transition from preserved oceanic and rift domains in the West to their complete inversion in the East enables us to study the progressive reactivation of a hyperextended rift system. We use seismic interpretation, gravity inversion, and field mapping to identify and map former rift domains and their subsequent reactivation. We propose a new map and sections across the system illustrating the progressive integration of the rift domains into the orogen. This study aims to provide insights on the formation of hyperextended rift systems and discuss their role during reactivation. Two spatially and temporally distinct rift systems can be distinguished: the Bay of Biscay-Parentis and the Pyrenean-Basque-Cantabrian rifts. While the offshore Bay of Biscay represent a former mature oceanic domain, the fossil remnants of hyperextended domains preserved onshore in the Pyrenean-Cantabrian orogen record distributed extensional deformation partitioned between strongly segmented rift basins. Reactivation initiated in the exhumed mantle domain before it affected the hyperthinned domain. Both domains accommodated most of the shortening. The final architecture of the orogen is acquired once the conjugate necking domains became involved in collisional processes. The complex 3-D architecture of the initial rift system may partly explain the heterogeneous reactivation of the overall system. These results have important implications for the formation and reactivation of hyperextended rift systems and for the restoration of the Bay of Biscay and Pyrenean domains
Geology | 2015
Julie Tugend; Gianreto Manatschal; N. J. Kusznir
We focus on the Iberian-European plate boundary (IEPB), whose nature, age, and evolution are strongly debated. In contrast to previous interpretations of the IEPB as a major lithospheric-scale left-lateral strike-slip fault, we propose a more complex deformation history. The mapping of rift domains at the transition between Iberia and Europe emphasizes the existence of spatially disconnected rift systems. Based on their restoration, we suggest that the deformation was partitioned between a set of distinct left-lateral transtensional rift systems from the Late Jurassic to Early Cretaceous. A plate kinematic reorganization at Aptian-Albian time resulted in the onset of sea-floor spreading in the western Bay of Biscay and extreme crustal and lithosphere thinning in intra-continental rift basins to the east. The formation and reactivation of the IEPB is interpreted as the result of the polyphase evolution of a diffuse transient plate boundary that failed to localize. The results of this work may provide new insights on (1) processes preceding breakup and the initiation of segmented and strongly oblique shear margins, (2) the deformation history of nascent divergent plate boundaries, and (3) the kinematics of the southern North Atlantic and Alpine domain in western Europe.
Geological Society, London, Special Publications | 2015
Julie Tugend; Gianreto Manatschal; N. J. Kusznir; Emmanuel Masini
Abstract We use the Bay of Biscay and Western Pyrenees as a natural laboratory to develop and apply an approach to characterize and identify distinctive rifted margin domains in offshore and onshore settings. The Bay of Biscay and Western Pyrenees offer access to seismically imaged, drilled and exposed parts of one and the same hyperextended rift system. Offshore, we use gravity inversion and flexural backstripping techniques combined with seismic interpretation to provide estimates of accommodation space, crustal thickness and lithosphere thinning. Onshore, we focus on key outcrops of the former rift domain to describe the nature of sediment and basement rocks, and of their interface. This qualitative and quantitative characterization provides diagnostic elements for the identification of five distinct structural domains at magma-poor rifted margins and their fossil analogues (proximal, necking, hyperthinned, exhumed mantle and oceanic domains). This new approach can be used to reconcile offshore and onshore observations, and to aid interpretation when only local observations are available. Onshore remnants can be placed in an offshore rifted-margin context, enabling the prediction of first-order crustal architecture. For the interpretation of offshore seismic reflection sections, geological insights into rift structures and basement nature can be suggested based on onshore analogies. Supplementary material: Sensitivity of backstripping results to flexural rigidity is available at http://www.geolsoc.org.uk/SUP18778.
Geology | 2016
Daniel Sauter; Patrick Unternehr; Gianreto Manatschal; Julie Tugend; Mathilde Cannat; Patrick Le Quellec; N. J. Kusznir; Marc Munschy; Sylvie Leroy; Jeanne Mercier de Lépinay; James W. Granath; Brian Horn
Our understanding of melt generation, migration, and extraction in the Earth’s mantle beneath mid-oceanic ridges is mostly derived from geodynamic numerical models constrained by geological and geophysical observations at sea and field investigations of ophiolites, and is therefore restricted to the oceanic crust and the shallow part of the mantle. Here we use a >200-km-long, deep seismic reflection section to image with high resolution the sub-oceanic lithosphere within the Western Somali Basin (offshore eastern Africa) where spreading ceased at ca. 120 Ma. The location of the failed spreading axis is inferred from both seismic data and gravity data. Several groups of strong reflections are imaged to depths of >30 km below the top of the oceanic crust. We interpret the deepest reflectors, within the mantle, as resulting from frozen melt bodies which may be relicts of a paleo–melt channel system located at the base of the lithosphere and formerly feeding the failed ridge axis. Other reflectors within the mantle may correspond to melt bodies injected into major shear zones along the Davie fracture zone. Another group of reflectors, located below a 8–5-km-thick oceanic crust, is interpreted as marking a fossil melt-rich crust-mantle transition zone as much as 3 km thick. This interpretation implies an inefficient extraction of melt out of the mantle, which is favored by the combination of a slow spreading rate and a high magma budget.
Scientific Reports | 2017
Morgane Gillard; Daniel Sauter; Julie Tugend; Simon Tomasi; Marie-Eva Epin; Gianreto Manatschal
Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.
Tectonics | 2018
P. Cadenas; G. Fernández‐Viejo; J. A. Pulgar; Julie Tugend; Gianreto Manatschal; Timothy A. Minshull
The Alpine Pyrenean‐Cantabrian orogen developed along the plate boundary between Iberia and Europe, involving the inversion of Mesozoic hyperextended basins along the southern Biscay margin. Thus, this margin represents a natural laboratory to analyze the control of structural rift inheritance on the compressional reactivation of a continental margin. With the aim to identify former rift domains and investigate their role during the subsequent compression, we performed a structural analysis of the central and western North Iberian margin, based on the interpretation of seismic reflection profiles and local constraints from drill‐hole data. Seismic interpretations and published seismic velocity models enabled the development of crustal thickness maps that helped to constrain further the offshore and onshore segmentation. Based on all these constraints, we present a rift domain map across the central and western North Iberian margin, as far as the adjacent western Cantabrian Mountains. Furthermore, we provide a first‐order description of the margin segmentation resulting from its polyphase tectonic evolution. The most striking result is the presence of a hyperthinned domain (e.g., Asturian Basin) along the central continental platform that is bounded to the north by the Le Danois High, interpreted as a rift‐related continental block separating two distinctive hyperextended domains. From the analysis of the rift domain map and the distribution of reactivation structures, we conclude that the landward limit of the necking domain and the hyperextended domains, respectively, guide and localize the compressional overprint. The Le Danois block acted as a local buttress, conditioning the inversion of the Asturian Basin.
Terra Nova | 2017
Michael Nirrengarten; Gianreto Manatschal; Julie Tugend; N. J. Kusznir; Daniel Sauter
Tectonics | 2018
P. Cadenas; G. Fernández‐Viejo; J. A. Pulgar; Julie Tugend; Gianreto Manatschal; Timothy A. Minshull
Geophysical Journal International | 2018
Daniel Sauter; Julie Tugend; Morgane Gillard; Michael Nirrengarten; Julia Autin; Gianreto Manatschal; Mathilde Cannat; Sylvie Leroy; Marc Schaming
Tectonics | 2018
Nathalie Etheve; Geoffroy Mohn; Dominique Frizon de Lamotte; E. Roca; Julie Tugend; Júlia Gómez-Romeu