Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Wang is active.

Publication


Featured researches published by Julie Wang.


Journal of Immunology | 2010

Cutting Edge: All-Trans Retinoic Acid Sustains the Stability and Function of Natural Regulatory T Cells in an Inflammatory Milieu

Xiaohui Zhou; Ning Kong; Julie Wang; Huiming Fan; Hejian Zou; David A. Horwitz; David D. Brand; Zhongmin Liu; Song Guo Zheng

Recent studies have demonstrated that plasticity of naturally occurring CD4+Foxp3+ regulatory T cells (nTregs) may account for their inability to control chronic inflammation in established autoimmune diseases. All-trans retinoic acid (atRA), the active derivative of vitamin A, has been demonstrated to promote Foxp3+ Treg differentiation and suppress Th17 development. In this study, we report a vital role of atRA in sustaining the stability and functionality of nTregs in the presence of IL-6. We found that nTregs treated with atRA were resistant to Th17 and other Th cell conversion and maintained Foxp3 expression and suppressive activity in the presence of IL-6 in vitro. atRA decreased IL-6R expression and signaling by nTregs. Of interest, adoptive transfer of nTregs even from arthritic mice treated with atRA suppressed progression of established collagen-induced arthritis. We suggest that nTregs treated with atRA may represent a novel treatment strategy to control established chronic immune-mediated inflammatory diseases.


PLOS ONE | 2010

Characterization of Protective Human CD4+CD25+ FOXP3+ Regulatory T Cells Generated with IL-2, TGF-β and Retinoic Acid

Ling Lu; Xiaohui Zhou; Julie Wang; Song Guo Zheng; David A. Horwitz

Background Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo with pharmacological amounts of IL-2 and TGF-β. Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable and can be converted to effector cells by pro-inflammatory cytokines. Although protective Foxp3+CD4+CD25+ cells resistant to proinflammatory cytokines have been generated in mice, in humans this result has been elusive. Our objective, therefore, was to induce human naïve CD4+ cells to become stable, functional CD25+ Foxp3+ regulatory cells that were also resistant to the inhibitory effects of proinflammatory cytokines. Methodology/Principal Findings The addition of the vitamin A metabolite, all-trans retinoic acid (atRA) to human naïve CD4+ cells suboptimally activated with IL-2 and TGF-β enhanced and stabilized FOXP3 expression, and accelerated their maturation to protective regulatory T cells. AtRA, by itself, accelerated conversion of naïve to mature cells but did not induce FOXP3 or suppressive activity. The combination of atRA and TGF-β enabled CD4+CD45RA+ cells to express a phenotype and trafficking receptors similar to natural Tregs. AtRA/TGF-β-induced CD4+ regs were anergic and low producers of IL-2. They had potent in vitro suppressive activity and protected immunodeficient mice from a human-anti-mouse GVHD as well as expanded endogenous Tregs. However, treatment of endogenous Tregs with IL-1β and IL-6 decreased FOXP3 expression and diminished their protective effects in vivo while atRA-induced iTregs were resistant to these inhibitory effects. Conclusions/Significance We have developed a methodology that induces human CD4+ cells to rapidly become stable, fully functional suppressor cells that are also resistant to proinflammatory cytokines. This methodology offers a practical novel strategy to treat human autoimmune diseases and prevent allograft rejection without the use of agents that kill cells or interfere with signaling pathways.


Arthritis & Rheumatism | 2013

Adoptive Transfer of Human Gingiva‐Derived Mesenchymal Stem Cells Ameliorates Collagen‐Induced Arthritis via Suppression of Th1 and Th17 Cells and Enhancement of Regulatory T Cell Differentiation

Maogen Chen; Wenru Su; Xiaohong Lin; Zhiyong Guo; Julie Wang; Qunzhou Zhang; David D. Brand; Bernhard Ryffel; Jiefu Huang; Zhongmin Liu; Xiaoshun He; Anh D. Le; Song Guo Zheng

OBJECTIVE Current approaches offer no cures for rheumatoid arthritis (RA). Accumulating evidence has revealed that manipulation of bone marrow-derived mesenchymal stem cells (BM-MSCs) may have the potential to control or even prevent RA, but BM-MSC-based therapy faces many challenges, such as limited cell availability and reduced clinical feasibility. This study in mice with established collagen-induced arthritis (CIA) was undertaken to determine whether substitution of human gingiva-derived mesenchymal stem cells (G-MSCs) would significantly improve the therapeutic effects. METHODS CIA was induced in DBA/1J mice by immunization with type II collagen and Freunds complete adjuvant. G-MSCs were injected intravenously into the mice on day 14 after immunization. In some experiments, intraperitoneal injection of PC61 (anti-CD25 antibody) was used to deplete Treg cells in arthritic mice. RESULTS Infusion of G-MSCs in DBA/1J mice with CIA significantly reduced the severity of arthritis, decreased the histopathology scores, and down-regulated the production of inflammatory cytokines (interferon-γ and interleukin-17A). Infusion of G-MSCs also resulted in increased levels of CD4+CD39+FoxP3+ cells in arthritic mice. These increases were noted early after infusion in the spleens and lymph nodes, and later after infusion in the synovial fluid. The FoxP3+ Treg cells that were increased in frequency mainly consisted of Helios-negative cells. When Treg cells were depleted, infusion of G-MSCs partially interfered with the progression of CIA. Pretreatment of G-MSCs with a CD39 or CD73 inhibitor significantly reversed the protective effect of G-MSCs on CIA. CONCLUSION The role of G-MSCs in controlling the development and severity of CIA mostly depends on CD39/CD73 signals and partially depends on the induction of CD4+CD39+FoxP3+ Treg cells. G-MSCs provide a promising approach for the treatment of autoimmune diseases.


Arthritis & Rheumatism | 2012

Antigen-specific transforming growth factor β-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance.

Ning Kong; Qin Lan; Maogen Chen; Julie Wang; Wei Shi; David A. Horwitz; Valerie Quesniaux; Bernhard Ryffel; Zhongmin Liu; David D. Brand; Hejian Zou; Song Guo Zheng

OBJECTIVE Transferred CD4+CD25+FoxP3+ Treg cells can prevent autoimmune disease, but generally fail to ameliorate established disease. This study was undertaken to compare the effects of antigen-specific Treg cells induced with interleukin-2 (IL-2) and transforming growth factor β (TGFβ) ex vivo (induced Treg [iTreg] cells) to the effects of equivalent expanded thymus-derived natural Treg (nTreg) cells on established collagen-induced arthritis (CIA). METHODS CIA was induced in DBA/1 mice by immunization with type II collagen (CII), and before or shortly after immunization, mice were treated with iTreg or nTreg cells that were generated or expanded in vitro. Clinical scores were determined. Inflammatory responses were determined by measuring the levels of anti-CII antibody in the serum and examining the histologic features of the mouse joints. The Th1/Th17-mediated autoreactive response was evaluated by determining the cytokine profile of the draining lymph node (LN) cells of the mice by flow cytometry. RESULTS Following transfer, nTreg cells exhibited decreased FoxP3 and Bcl-2 expression and decreased suppressive activity, and many converted to Th17 cells. In contrast, transferred iTreg cells were more numerous, retained FoxP3 expression and their suppressive activity in the presence of IL-6, and were resistant to Th17 conversion. Notably, 10 days after the transfer of donor iTreg cells, predominance was shifted from Th17 cells to Treg cells in the draining LNs of recipient mice. CONCLUSION These findings provide evidence that transferred TGFβ-induced iTreg cells are more stable and functional than nTreg cells in mice with established autoimmunity. Moreover, iTreg cells can have tolerogenic effects even in the presence of ongoing inflammation. The therapeutic potential of human iTreg cells in subjects with chronic, immune-mediated inflammatory diseases should be investigated.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions

Ling Lu; Qin Lan; Zhiyuan Li; Xiaohui Zhou; Jian Gu; Qiang Li; Julie Wang; Maogen Chen; Ya Liu; Yi Shen; David D. Brand; Bernhard Ryffel; David A. Horwitz; Francisco P. Quismorio; Zhongmin Liu; Bin Li; Nancy J. Olsen; Song Guo Zheng

Significance Natural regulatory T cells (nTregs) play important roles in preventing autoimmune diseases, but they may be unstable in the presence of inflammation. Here we report that all-trans RA (atRA) but not rapamycin prevents human nTregs from converting to Th1/Th17 cells and sustains their suppressive function in inflammatory environments. Adoptive transfer of nTregs pretreated with atRA enhances their suppressive effects on xenograft-vs.-host diseases. Moreover, we show that atRA suppresses IL-1 receptor upregulation, accelerates IL-6 receptor downregulation, and affects the epigenetic modifications in Foxp3 locus in nTregs following inflammatory stimulation. We suggest that nTregs primed with atRA may represent a novel treatment strategy to control established chronic immune-mediated diseases. Recent studies have demonstrated that thymus-derived naturally occurring CD4+Foxp3+ regulatory T cells (Tregs) in human and mouse may be unstable and dysfunctional in the presence of proinflammatory cytokines. All-trans RA (atRA), the active derivative of vitamin A, has been shown to regulate Treg and T effector cell differentiation. We hypothesize atRA stabilizes human natural Tregs (nTregs) under inflammatory conditions. atRA prevents human nTregs from converting to Th1 and/or Th17 cells and sustains their Foxp3 expression and suppressive function in vitro or in vivo following encounters with IL-1 and IL-6. Interestingly, adoptive transfer of human nTregs pretreated with atRA significantly enhanced their suppressive effects on xenograft-vs.-host diseases (xGVHDs), and atRA- but not rapamycin-pretreated nTregs sustained the functional activity against xGVHD after stimulation with IL-1/IL-6. atRA suppresses IL-1 receptor (IL-1R) up-regulation, accelerates IL-6R down-regulation, and diminishes their signaling events as well as prevents the up-regulation of STIP1 homology and U-Box containing protein 1 on Foxp3+ cells following IL-1/IL-6 stimulation. atRA also increases histone acetylation on Foxp3 gene promoter and CpG demethylation in the region of Foxp3 locus (i.e., Treg-specific demethylated region). These results strongly implicate that nTregs primed with atRA may represent a novel treatment strategy to control established chronic immune-mediated autoimmune and inflammatory diseases.


Clinical Rheumatology | 2010

The imbalance between regulatory and IL-17-secreting CD4+ T cells in lupus patients

Jilin Ma; Jianning Yu; Xiaojuan Tao; Long Cai; Julie Wang; Song Guo Zheng

It has been well recognized that a deficit of numbers and function of CD4+CD25+Foxp3+ cells (Treg) is attributed to the development of some autoimmune diseases; however, there are controversial data regarding the suppressive effect of Treg cells on the T cell response in systemic lupus erythematosus (SLE). Additionally, IL-17-producing cells (Th17) have been recently emerged as a new pathogenic cell, but their role in lupus remains unclear. In this study, we studied the connection between Treg and Th17 cells in lupus patients. We observed that, while Treg or Th17 cells alone were not correlated to SLE development, the ratio of Treg to Th17 cells in active SLE patients is significantly lower than that in inactive SLE patients and healthy controls, and we also found corticosteroid treatment increased the ratio of Treg to Th17 cells in active SLE patients. Moreover, this ratio is inversely correlated with the severity of active SLE. The present study indicates that active SLE appears to exist as an imbalance between Treg and Th17 cells. Correction of this Treg/Th17 imbalance may have therapeutic impact for patients with SLE.


PLOS ONE | 2011

All-trans retinoic acid promotes TGF-β-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus.

Ling Lu; Jilin Ma; Zhiyuan Li; Qin Lan; Maogen Chen; Ya Liu; Zanxian Xia; Julie Wang; Yuan-Ping Han; Wei Shi; Valerie Quesniaux; Bernhard Ryffel; David D. Brand; Bin Li; Zhongmin Liu; Song Guo Zheng

Background It has been documented all-trans retinoic acid (atRA) promotes the development of TGF-β-induced CD4+Foxp3+ regulatory T cells (iTreg) that play a vital role in the prevention of autoimmune responses, however, molecular mechanisms involved remain elusive. Our objective, therefore, was to determine how atRA promotes the differentiation of iTregs. Methodology/Principal Findings Addition of atRA to naïve CD4+CD25− cells stimulated with anti-CD3/CD28 antibodies in the presence of TGF-β not only increased Foxp3+ iTreg differentiation, but maintained Foxp3 expression through apoptosis inhibition. atRA/TGF-β-treated CD4+ cells developed complete anergy and displayed increased suppressive activity. Infusion of atRA/TGF-β-treated CD4+ cells resulted in the greater effects on suppressing symptoms and protecting the survival of chronic GVHD mice with typical lupus-like syndromes than did CD4+ cells treated with TGF-β alone. atRA did not significantly affect the phosphorylation levels of Smad2/3 and still promoted iTreg differentiation in CD4+ cells isolated from Smad3 KO and Smad2 conditional KO mice. Conversely, atRA markedly increased ERK1/2 activation, and blockade of ERK1/2 signaling completely abolished the enhanced effects of atRA on Foxp3 expression. Moreover, atRA significantly increased histone methylation and acetylation within the promoter and conserved non-coding DNA sequence (CNS) elements at the Foxp3 gene locus and the recruitment of phosphor-RNA polymerase II, while DNA methylation in the CNS3 was not significantly altered. Conclusions/Significance We have identified the cellular and molecular mechanism(s) by which atRA promotes the development and maintenance of iTregs. These results will help to enhance the quantity and quality of development of iTregs and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation.


European Journal of Immunology | 2009

Synergistic effect of TGF-β superfamily members on the induction of Foxp3+ Treg

Ling Lu; Jilin Ma; Xuehao Wang; Julie Wang; Feng Zhang; Jiangning Yu; Ge He; Bing Xu; David D. Brand; David A. Horwitz; Wei Shi; Song Guo Zheng

TGF‐β plays an important role in the induction of Treg and maintenance of immunologic tolerance, but whether other members of TGF‐β superfamily act together or independently to achieve this effect is poorly understood. Although others have reported that the bone morphogenetic proteins (BMP) and TGF‐β have similar effects on the development of thymocytes and T cells, in this study, we report that members of the BMP family, BMP‐2 and ‐4, are unable to induce non‐regulatory T cells to become Foxp3+ Treg. Neutralization studies with Noggin have revealed that BMP‐2/4 and the BMP receptor signaling pathway is not required for TGF‐β to induce naïve CD4+CD25− cells to express Foxp3; however, BMP‐2/4 and TGF‐β have a synergistic effect on the induction of Foxp3+ Treg. BMP‐2/4 affects non‐Smad signaling molecules including phosphorylated ERK and JNK, which could subsequently promote the differentiation of Foxp3+ Treg induced by TGF‐β. Data further advocate that TGF‐β is a key signaling factor for Foxp3+ Treg development. In addition, the synergistic effect of BMP‐2/4 and TGF‐β indicates that the simultaneous manipulation of TGF‐β and BMP signaling might have considerable effects in the clinical setting for the enhancement of Treg purity and yield.


PLOS ONE | 2012

Adoptive Transfer of Induced-Treg Cells Effectively Attenuates Murine Airway Allergic Inflammation

Wei Xu; Qin Lan; Maogen Chen; Hui Chen; Ning Zhu; Xiaohui Zhou; Julie Wang; Huimin Fan; Chun-Song Yan; Jiu-Long Kuang; David Warburton; Dieudonnée Togbe; Bernhard Ryffel; Song Guo Zheng; Wei Shi

Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4+FoxP3+) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.


PLOS ONE | 2011

BAFF promotes Th17 cells and aggravates experimental autoimmune encephalomyelitis.

Xiaohui Zhou; Zanxian Xia; Qin Lan; Julie Wang; Wenru Su; Yuan-Ping Han; Huimin Fan; Zhongmin Liu; William Stohl; Song Guo Zheng

Background BAFF, in addition to promoting B cell survival and differentiation, may affect T cells. The objective of this study was to determine the effect of BAFF on Th17 cell generation and its ramifications for the Th17 cell-driven disease, EAE. Methodology/Principal Findings Th17 cells were increased in BAFF-Tg B6 (B6.BTg) mice and decreased in B6.Baff−/− mice. Th17 cells in B6.Baff−/− mice bearing a BAFF Tg (B6.Baff−/−.BTg mice) were identical to those in B6.BTg mice, indicating that membrane BAFF is dispensable for Th17 cell generation as long as soluble BAFF is plentiful. In T + non-T cell criss-cross co-cultures, Th17 cell generation was greatest in cultures containing B6.BTg T cells and lowest in cultures containing B6.Baff−/− T cells, regardless of the source of non-T cells. In cultures containing only T cells, Th17 cell generation followed an identical pattern. CD4+ cell expression of CD126 (IL-6R α chain) was increased in B6.BTg mice and decreased in B6.Baff−/− mice, and activation of STAT3 following stimulation with IL-6 + TGF-β was also greatest in B6.BTg cells and lowest in B6.Baff−/− cells. EAE was clinically and pathologically most severe in B6.BTg mice and least severe in B6.Baff−/− mice and correlated with MOG35–55 peptide-induced Th17 cell responses. Conclusions/Significance Collectively, these findings document a contribution of BAFF to pathogenic Th17 cell responses and suggest that BAFF antagonism may be efficacious in Th17 cell-driven diseases.

Collaboration


Dive into the Julie Wang's collaboration.

Top Co-Authors

Avatar

Song Guo Zheng

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

David D. Brand

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maogen Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

David A. Horwitz

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Lu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Nancy J. Olsen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Qin Lan

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge