Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Wheway is active.

Publication


Featured researches published by Julie Wheway.


Journal of Clinical Investigation | 2002

Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome

Joanna R. Groom; Susan L. Kalled; Anne H. Cutler; Carl Olson; Stephen A. Woodcock; Pascal Schneider; Jürg Tschopp; Teresa G. Cachero; Marcel Batten; Julie Wheway; Davide Mauri; Dana Cavill; Tom P. Gordon; Charles R. Mackay; Fabienne Mackay

BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögrens syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.


Journal of Immunology | 2004

B Cell-Activating Factor Belonging to the TNF Family (BAFF)-R Is the Principal BAFF Receptor Facilitating BAFF Costimulation of Circulating T and B Cells

Lai Guan Ng; Andrew P. R. Sutherland; Rebecca Newton; Fang Qian; Teresa G. Cachero; Martin L. Scott; Jeffrey Thompson; Julie Wheway; Tatyana Chtanova; Joanna Groom; Ian Sutton; Cynthia Xin; Stuart G. Tangye; Susan L. Kalled; Fabienne Mackay; Charles R. Mackay

BAFF (B cell-activating factor belonging to the TNF family) is a cell survival and maturation factor for B cells, and overproduction of BAFF is associated with systemic autoimmune disease. BAFF binds to three receptors, BAFF-R, transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B cell maturation Ag (BCMA). Using specific mAbs, BAFF-R was found to be the predominant BAFF receptor expressed on peripheral B cells, in both humans and mice, and antagonist mAbs to BAFF-R blocked BAFF-mediated costimulation of anti-μ responses. The other BAFF receptors showed a much more restricted expression pattern, suggestive of specialized roles. BCMA was expressed by germinal center B cells, while TACI was expressed predominantly by splenic transitional type 2 and marginal zone B cells, as well as activated B cells, but was notably absent from germinal center B cells. BAFF was also an effective costimulator for T cells, and this costimulation occurs entirely through BAFF-R. BAFF-R, but not TACI or BCMA, was expressed on activated/memory subsets of T cells, and T cells from BAFF-R mutant A/WySnJ mice failed to respond to BAFF costimulation. Thus, BAFF-R is important not only for splenic B cell maturation, but is the major mediator of BAFF-dependent costimulatory responses in peripheral B and T cells.


Journal of Immunology | 2004

TNF Deficiency Fails to Protect BAFF Transgenic Mice against Autoimmunity and Reveals a Predisposition to B Cell Lymphoma

Marcel Batten; Carrie A. Fletcher; Lai Guan Ng; Joanna Groom; Julie Wheway; Yacine Laâbi; Xiaoguan Xin; Pascal Schneider; Jürg Tschopp; Charles R. Mackay; Fabienne Mackay

TNF is well characterized as a mediator of inflammatory responses. TNF also facilitates organization of secondary lymphoid organs, particularly B cell follicles and germinal centers, a hallmark of T-dependent Ab responses. TNF also mediates defense against tumors. We examined the role of TNF in the development of inflammatory autoimmune disorders resembling systemic lupus erythematosus and Sjögren’s syndrome induced by excess B cell-activating factor belonging to the TNF family (BAFF), by generating BAFF-transgenic (Tg) mice lacking TNF. TNF−/− BAFF-Tg mice resembled TNF−/− mice, in that they lacked B cell follicles, follicular dendritic cells, and germinal centers, and have impaired responses to T-dependent Ags. Nevertheless, TNF−/− BAFF-Tg mice developed autoimmune disorders similar to that of BAFF-Tg mice. Disease in TNF−/− BAFF-Tg mice correlates with the expansion of transitional type 2 and marginal zone B cell populations and enhanced T-independent immune responses. TNF deficiency in BAFF-Tg mice also led to a surprisingly high incidence of B cell lymphomas (>35%), which most likely resulted from the combined effects of BAFF promotion of neoplastic B cell survival, coupled with lack of protective antitumor defense by TNF. Thus, TNF appears to be dispensable for BAFF-mediated autoimmune disorders and may, in fact, counter any proneoplastic effects of high levels of BAFF in diseases such as Sjögren’s syndrome, systemic lupus erythematosus, and rheumatoid arthritis.


Journal of Experimental Medicine | 2005

A fundamental bimodal role for neuropeptide Y1 receptor in the immune system

Julie Wheway; Charles R. Mackay; Rebecca Newton; Amanda Sainsbury; Dana Boey; Herbert Herzog; Fabienne Mackay

Psychological conditions, including stress, compromise immune defenses. Although this concept is not novel, the molecular mechanism behind it remains unclear. Neuropeptide Y (NPY) in the central nervous system is a major regulator of numerous physiological functions, including stress. Postganglionic sympathetic nerves innervating lymphoid organs release NPY, which together with other peptides activate five Y receptors (Y1, Y2, Y4, Y5, and y6). Using Y1-deficient (Y1−/−) mice, we showed that Y1−/− T cells are hyperresponsive to activation and trigger severe colitis after transfer into lymphopenic mice. Thus, signaling through Y1 receptor on T cells inhibits T cell activation and controls the magnitude of T cell responses. Paradoxically, Y1−/− mice were resistant to T helper type 1 (Th1) cell–mediated inflammatory responses and showed reduced levels of the Th1 cell–promoting cytokine interleukin 12 and reduced interferon γ production. This defect was due to functionally impaired antigen-presenting cells (APCs), and consequently, Y1−/− mice had reduced numbers of effector T cells. These results demonstrate a fundamental bimodal role for the Y1 receptor in the immune system, serving as a strong negative regulator on T cells as well as a key activator of APC function. Our findings uncover a sophisticated molecular mechanism regulating immune cell functions that can lead to stress-induced immunosuppression.


Current Topics in Medicinal Chemistry | 2007

NPY and Receptors in Immune and Inflammatory Diseases

Julie Wheway; Herbert Herzog; Fabienne Mackay

Growing evidence suggests that neuropeptide Y (NPY) plays an important role in the immune system. NPY is produced by the central and peripheral nervous system but also by immune cells in response to activation. NPY has pleiotropic effects on both the innate and adaptive arms of the immune system, with effects ranging from the modulation of cell migration to macrophage, T helper (Th) cell cytokine release, and antibody production. Subsequent studies have confirmed the importance of this system in immunity in particular via the demonstration that Y1, a receptor for NPY, plays a fundamental role in autoimmunity and inflammation using Y1-deficient animals. Furthermore, clinical studies have suggested a role for NPY in other immune disorders such as asthma and arthritis. This review provides the latest information on the role of NPY and Y1 in the immune system, and discusses the potential new opportunities of this work for the development of a new generation of immuno-modulatory treatments of autoimmune and inflammatory diseases.


Peptides | 2007

The Y1 receptor for NPY: a key modulator of the adaptive immune system.

Julie Wheway; Herbert Herzog; Fabienne Mackay

Growing evidence suggests that the neuropeptide Y (NPY) system plays an important role in the immune system. Yet, little is known about the expression of NPY and receptors in the immune system. Moreover, original contradicting results have confused the picture and hampered a clear understanding of its role in the immune system. The use of Y(1) receptor-deficient mice, combined with advanced methods to investigate immune functions, have provided the solution to the problem raised by previous disparities. From results obtained using Y(1)-deficient mice (Y(1)(-/-)), we uncovered a bimodal role for Y(1) on immune cells. Y(1) expression on antigen-presenting cells (APC) is essential for their function as T cell priming elements. Conversely, Y(1) signaling in T cells plays a regulatory role without which T cells are hyper-responsive. The opposite role of Y(1) on APC and T cells has reconciled previous disparities by showing that signaling via Y(1) protects against inflammation by inhibiting T cell responses, whereas Y(1)(-/-) mice are protected in the same inflammatory models due to defective APCs.


PLOS Pathogens | 2014

Production, Fate and Pathogenicity of Plasma Microparticles in Murine Cerebral Malaria

Fatima El-Assaad; Julie Wheway; Nicholas H. Hunt; Georges E. Grau; Valery Combes

In patients with cerebral malaria (CM), higher levels of cell-specific microparticles (MP) correlate with the presence of neurological symptoms. MP are submicron plasma membrane-derived vesicles that express antigens of their cell of origin and phosphatidylserine (PS) on their surface, facilitating their role in coagulation, inflammation and cell adhesion. In this study, the in vivo production, fate and pathogenicity of cell-specific MP during Plasmodium berghei infection of mice were evaluated. Using annexin V, a PS ligand, and flow cytometry, analysis of platelet-free plasma from infected mice with cerebral involvement showed a peak of MP levels at the time of the neurological onset. Phenotypic analyses showed that MP from infected mice were predominantly of platelet, endothelial and erythrocytic origins. To determine the in vivo fate of MP, we adoptively transferred fluorescently labelled MP from mice with CM into healthy or infected recipient mice. MP were quickly cleared following intravenous injection, but microscopic examination revealed arrested MP lining the endothelium of brain vessels of infected, but not healthy, recipient mice. To determine the pathogenicity of MP, we transferred MP from activated endothelial cells into healthy recipient mice and this induced CM-like brain and lung pathology. This study supports a pathogenic role for MP in the aggravation of the neurological lesion and suggests a causal relationship between MP and the development of CM.


Infection and Immunity | 2013

Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro.

Fatima El-Assaad; Julie Wheway; Andrew J. Mitchell; Jinning Lou; Nicholas H. Hunt; Valery Combes; Georges E. Grau

ABSTRACT Sequestration of infected red blood cells (iRBC) within the cerebral and pulmonary microvasculature is a hallmark of human cerebral malaria (hCM). The interaction between iRBC and the endothelium in hCM has been studied extensively and is linked to the severity of malaria. Experimental CM (eCM) caused by Plasmodium berghei ANKA reproduces most features of hCM, although the sequestration of RBC infected by P. berghei ANKA (PbA-iRBC) has not been completely delineated. The role of PbA-iRBC sequestration in the severity of eCM is not well characterized. Using static and flow cytoadherence assays, we provide the first direct in vitro evidence for the binding of PbA-iRBC to murine brain and lung microvascular endothelial cells (MVEC). We found that basal PbA-iRBC cytoadherence to MVECs was significantly higher than that of normal red blood cells (NRBC) and of RBC infected with P. berghei K173 (PbK173-iRBC), a strain that causes noncerebral malaria (NCM). MVEC prestimulation with tumor necrosis factor (TNF) failed to promote any further significant increase in mixed-stage iRBC adherence. Interestingly, enrichment of the blood for mature parasites significantly increased PbA-iRBC binding to the MVECs prestimulated with TNF, while blockade of VCAM-1 reduced this adhesion. Our study provides evidence for the firm, flow-resistant binding to endothelial cells of iRBC from strain ANKA-infected mice, which develop CM, and for less binding of iRBC from strain K173-infected mice, which develop NCM. An understanding of P. berghei cytoadherence may help elucidate the importance of sequestration in the development of CM and aid the development of antibinding therapies to help reduce the burden of this syndrome.


Journal of Immunology | 2014

Endothelial Microparticles Interact with and Support the Proliferation of T Cells

Julie Wheway; Sharissa L. Latham; Valery Combes; Georges E. Grau

Endothelial cells closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of endothelial cell microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, such as atherosclerosis, sepsis, multiple sclerosis, and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses, we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for Ag presentation and T cell costimulation, that is, β2-microglobulin, MHC II, CD40, and ICOSL. HBEC were able to take up fluorescently labeled Ags with EMP also containing fluorescent Ags, suggestive of Ag carryover from HBEC to EMP. In cocultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4+ and CD8+ subsets, with higher proportions of T cells binding EMP from cytokine-stimulated cells. The increased binding of EMP from cytokinestimulated HBEC to T cells was VCAM-1 and ICAM-1 dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4+ T cells and that of CD8+ T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing Ag presentation, thereby pointing toward a novel role for MP in neuroimmunological complications of infectious diseases.


PLOS ONE | 2013

The brain microvascular endothelium supports T cell proliferation and has potential for alloantigen presentation.

Julie Wheway; Stephanie Obeid; Pierre-Olivier Couraud; Valery Combes; Georges E. Grau

Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC) interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4+ and CD8+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.

Collaboration


Dive into the Julie Wheway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert Herzog

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Groom

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge