Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Wieseler is active.

Publication


Featured researches published by Julie Wieseler.


Brain Behavior and Immunity | 2010

Evidence that opioids may have toll-like receptor 4 and MD-2 effects

Mark R. Hutchinson; Yingning Zhang; Mitesh Shridhar; John H. Evans; Madison M. Buchanan; Tina X. Zhao; Peter F. Slivka; Benjamen D. Coats; Niloofar Rezvani; Julie Wieseler; Travis S. Hughes; Kyle E. Landgraf; Stefanie Chan; Stephanie Fong; Simon Phipps; Joseph J. Falke; Leslie A. Leinwand; Steven F. Maier; Hang Yin; Kenner C. Rice; Linda R. Watkins

Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.


Brain Behavior and Immunity | 2008

Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia

Mark R. Hutchinson; Benjamen D. Coats; Susannah S. Lewis; Yingning Zhang; David B. Sprunger; Niloofar Rezvani; Eric M. Baker; Brian M. Jekich; Julie Wieseler; Andrew A. Somogyi; David Martin; Stephen Poole; Charles M. Judd; Steven F. Maier; Linda R. Watkins

Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.


Neuroscience | 2010

Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences

Mark R. Hutchinson; Susannah S. Lewis; Benjamen D. Coats; Niloofar Rezvani; Yingning Zhang; Julie Wieseler; Andrew A. Somogyi; Hang Yin; Steven F. Maier; Kenner C. Rice; Linda R. Watkins

Opioid-induced glial activation and its proinflammatory consequences have been associated with both reduced acute opioid analgesia and the enhanced development of tolerance, hyperalgesia and allodynia following chronic opioid administration. Intriguingly, recent evidence demonstrates that these effects can result independently from the activation of classical, stereoselective opioid receptors. Here, a structurally disparate range of opioids cause activation of signaling by the innate immune receptor toll like receptor 4 (TLR4), resulting in proinflammatory glial activation. In the present series of studies, we demonstrate that the (+)-isomers of methadone and morphine, which bind with negligible affinity to classical opioid receptors, induced upregulation of proinflammatory cytokine and chemokine production in rat isolated dorsal spinal cord. Chronic intrathecal (+)-methadone produced hyperalgesia and allodynia, which were associated with significantly increased spinal glial activation (TLR4 mRNA and protein) and the expression of multiple chemokines and cytokines. Statistical analysis suggests that a cluster of cytokines and chemokines may contribute to these nociceptive behavioral changes. Acute intrathecal (+)-methadone and (+)-morphine were also found to induce microglial, interleukin-1 and TLR4/myeloid differentiation factor-2 (MD-2) dependent enhancement of pain responsivity. In silico docking analysis demonstrated (+)-naloxone sensitive docking of (+)-methadone and (+)-morphine to human MD-2. Collectively, these data provide the first evidence of the pro-nociceptive consequences of small molecule xenobiotic activation of spinal TLR4 signaling independent of classical opioid receptor involvement.


Neuroscience | 2009

Evidence for a role of heat shock protein-90 in toll like receptor 4 mediated pain enhancement in rats.

Mark R. Hutchinson; Khara M. Ramos; Lisa C. Loram; Julie Wieseler; Paige W. Sholar; Jeffrey J. Kearney; Makenzie T. Lewis; Nicole Y. Crysdale; Yingning Zhang; Jacqueline A. Harrison; Steven F. Maier; Kenner C. Rice; Linda R. Watkins

Spinal cord microglial toll-like receptor 4 (TLR4) has been implicated in enhancing neuropathic pain and opposing morphine analgesia. The present study was initiated to explore TLR4-mediated pain modulation by intrathecal lipopolysaccharide, a classic TLR4 agonist. However, our initial study revealed that intrathecal lipopolysaccharide failed to induce low-threshold mechanical allodynia in naive rats, suggestive that TLR4 agonism may be insufficient to enhance pain. These studies explore the possibility that a second signal is required; namely, heat shock protein-90 (HSP90). This candidate was chosen for study given its known importance as a regulator of TLR4 signaling. A combination of in vitro TLR4 cell signaling and in vivo behavioral studies of pain modulation suggest that TLR4-enhancement of neuropathic pain and TLR4-suppression of morphine analgesia each likely require HSP90 as a cofactor for the effects observed. In vitro studies revealed that dimethyl sulfoxide (DMSO) enhances HSP90 release, suggestive that this may be a means by which DMSO enhances TLR4 signaling. While 2 and 100 microg lipopolysaccharide intrathecally did not induce mechanical allodynia across the time course tested, co-administration of 1 microg lipopolysaccharide with a drug that enhances HSP90-mediated TLR4 signaling now induced robust allodynia. In support of this allodynia being mediated via a TLR4/HSP90 pathway, it was prevented or reversed by intrathecal co-administration of a HSP90 inhibitor, a TLR4 inhibitor, a microglia/monocyte activation inhibitor (as monocyte-derived cells are the predominant cell type expressing TLR4), and interleukin-1 receptor antagonist (as this proinflammatory cytokine is a downstream consequence of TLR4 activation). Together, these results suggest for the first time that TLR4 activation is necessary but not sufficient to induce spinally mediated pain enhancement. Rather, the data suggest that TLR4-dependent pain phenomena may require contributions by multiple components of the TLR4 receptor complex.


Psychoneuroendocrinology | 2010

Neonatal bacterial infection alters fever to live and simulated infections in adulthood

Staci D. Bilbo; Julie Wieseler; Ruth M. Barrientos; Verne Tsang; Linda R. Watkins; Steven F. Maier

Fever is a critical component of the host immune response to infection. An emerging literature demonstrates that experience with infectious organisms early in life, during the perinatal period, may permanently program immune responses later in life, including fever. We explored the influence of neonatal infection with Escherichia coli on fever responses to lipopolysaccharide (LPS) and E. coli in adulthood. Fever to a low dose of LPS in adulthood did not significantly differ as a consequence of early-life infection. Eight days after the LPS injection, the same group of rats received a high dose of live E. coli. This time, neonatally infected rats exhibited a markedly longer fever than controls. In a subsequent experiment, fever to a single high dose of E. coli without prior LPS in adulthood did not differ by group, suggesting that the previous difference was a lack of tolerance to the dual challenges in early-infected rats. Finally, both groups exhibited decreased tumor necrosis factor (TNF)-alpha and toll-like-receptor (TLR) 4 production to dual LPS challenges in isolated splenocytes, whereas only rats infected as neonates exhibited increased cyclooxygenase-2 within the hypothalamus in response to adult infection, suggesting that early infection-induced changes in fever regulation may involve a change in central mechanisms. Taken together, these data indicate that early-life infection is associated with marked changes in host temperature regulation in adulthood.


Journal of Neurotrauma | 2010

Below Level Central Pain Induced by Discrete Dorsal Spinal Cord Injury

Julie Wieseler; Amanda Ellis; Andrew McFadden; Kimberley Brown; Charlotte Starnes; Steven F. Maier; Linda R. Watkins; Scott Falci

Central neuropathic pain occurs with multiple sclerosis, stroke, and spinal cord injury (SCI). Models of SCI are commonly used to study central neuropathic pain and are excellent at modeling gross physiological changes. Our goal was to develop a rat model of central neuropathic pain by traumatizing a discrete region of the dorsal spinal cord, thereby avoiding issues including paralysis, urinary tract infection, and autotomy. To this end, dorsal root avulsion was pursued. The model was developed by first determining the number of avulsed dorsal roots sufficient to induce below-level hindpaw mechanical allodynia. This was optimally achieved by unilateral T13 and L1 avulsion, which resulted in tissue damage confined to Lissauers tract, dorsal horn, and dorsal columns, at the site of avulsion, with no gross physical changes at other spinal levels. Behavior following avulsion was compared to that following rhizotomy of the T13 and L1 dorsal roots, a commonly used model of neuropathic pain. Avulsion induced below-level allodynia that was more robust and enduring than that seen after rhizotomy. This, plus the lack of direct spinal cord damage associated with rhizotomy, suggests that avulsion is not synonymous with rhizotomy, and that avulsion (but not rhizotomy) is a model of central neuropathic pain. The new model described here is the first to use discrete dorsal horn damage by dorsal root avulsion to create below-level bilateral central neuropathic pain.


Journal of Neuroimmunology | 2011

Prior laparotomy or corticosterone potentiates lipopolysaccharide-induced fever and sickness behaviors

Leah E. Hains; Lisa C. Loram; Frederick R. Taylor; Keith A. Strand; Julie Wieseler; Ruth M. Barrientos; Jennifer J. Young; Matthew G. Frank; Julia L. Sobesky; Thomas J. Martin; James C. Eisenach; Steven F. Maier; John D. Johnson; Monika Fleshner; Linda R. Watkins

Stimulating sensitized immune cells with a subsequent immune challenge results in potentiated pro-inflammatory responses translating into exacerbated sickness responses (i.e. fever, pain and lethargy). Both corticosterone (CORT) and laparotomy cause sensitization, leading to enhanced sickness-induced neuroinflammation or pain (respectively). However, it is unknown whether this sensitization affects all sickness behaviors and immune cell responses equally. We show that prior CORT and prior laparotomy potentiated LPS-induced fever but not lethargy. Prior CORT, like prior laparotomy, was able to potentiate sickness-induced pain. Release of nitric oxide (NO) from peritoneal macrophages stimulated ex vivo demonstrates that laparotomy, but not CORT sensitizes these cells.


Brain Behavior and Immunity | 2016

Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury.

Amanda Ellis; Peter M. Grace; Julie Wieseler; Jacob Favret; Kendra Springer; Bryce Skarda; Monica T. Ayala; Mark R. Hutchinson; Scott Falci; Kenner C. Rice; Steven F. Maier; Linda R. Watkins

Central neuropathic pain (CNP) is a pervasive, debilitating problem that impacts thousands of people living with central nervous system disorders, including spinal cord injury (SCI). Current therapies for treating this type of pain are ineffective and often have dose-limiting side effects. Although opioids are one of the most commonly used CNP treatments, recent animal literature has indicated that administering opioids shortly after a traumatic injury can actually have deleterious effects on long-term health and recovery. In order to study the deleterious effects of administering morphine shortly after trauma, we employed our low thoracic (T13) dorsal root avulsion model (Spinal Neuropathic Avulsion Pain, SNAP). Administering a weeklong course of 10mg/kg/day morphine beginning 24h after SNAP resulted in amplified mechanical allodynia. Co-administering the non-opioid toll-like receptor 4 (TLR4) antagonist (+)-naltrexone throughout the morphine regimen prevented morphine-induced amplification of SNAP. Exploration of changes induced by early post-trauma morphine revealed that this elevated gene expression of TLR4, TNF, IL-1β, and NLRP3, as well as IL-1β protein at the site of spinal cord injury. These data suggest that a short course of morphine administered early after spinal trauma can exacerbate CNP in the long term. TLR4 initiates this phenomenon and, as such, may be potential therapeutic targets for preventing the deleterious effects of administering opioids after traumatic injury.


Journal of Neurotrauma | 2014

Reversal of Established Traumatic Brain Injury-Induced, Anxiety-Like Behavior in Rats after Delayed, Post-Injury Neuroimmune Suppression

Krista M. Rodgers; Yuetiva K. Deming; Florencia M. Bercum; Serhiy Y. Chumachenko; Julie Wieseler; Kirk W. Johnson; Linda R. Watkins; Daniel S. Barth

Abstract Traumatic brain injury (TBI) increases the risk of neuropsychiatric disorders, particularly anxiety disorders. Yet, there are presently no therapeutic interventions to prevent the development of post-traumatic anxiety or effective treatments once it has developed. This is because, in large part, of a lack of understanding of the underlying pathophysiology. Recent research suggests that chronic neuroinflammatory responses to injury may play a role in the development of post-traumatic anxiety in rodent models. Acute peri-injury administration of immunosuppressive compounds, such as Ibudilast (MN166), have been shown to prevent reactive gliosis associated with immune responses to injury and also prevent lateral fluid percussion injury (LFPI)-induced anxiety-like behavior in rats. There is evidence in both human and rodent studies that post-traumatic anxiety, once developed, is a chronic, persistent, and drug-refractory condition. In the present study, we sought to determine whether neuroinflammation is associated with the long-term maintenance of post-traumatic anxiety. We examined the efficacy of an anti-inflammatory treatment in decreasing anxiety-like behavior and reactive gliosis when introduced at 1 month after injury. Delayed treatment substantially reduced established LFPI-induced freezing behavior and reactive gliosis in brain regions associated with anxiety and continued neuroprotective effects were evidenced 6 months post-treatment. These results support the conclusion that neuroinflammation may be involved in the development and maintenance of anxiety-like behaviors after TBI.


Methods of Molecular Biology | 2012

Unilateral T13 and L1 dorsal root avulsion: methods for a novel model of central neuropathic pain.

Julie Wieseler; Amanda Ellis; Steven F. Maier; Linda R. Watkins; Scott Falci

Central neuropathic pain is associated with many disease states including multiple sclerosis, stroke, and spinal cord injury, and is poorly managed. One type of central neuropathic pain that is particularly debilitating and challenging to treat is pain that occurs below the level of injury (below-level pain). The study of central neuropathic pain is commonly performed using animal models of stroke and spinal cord injury. Most of the spinal cord injury models currently being used were originally developed to model the gross physiological impact of clinical spinal cord injury. In contrast, the T13/L1 dorsal root avulsion model of spinal cord injury described here was developed specifically for the study of central pain, and as such, was developed to minimize confounding complications, such as paralysis, urinary tract infections, and autotomy. As such, this model induces robust and reliable hindpaw mechanical allodynia. Two versions of the model are described. The first is optimal for testing systemically administered pharmacological manipulations. The second was developed to accommodate intrathecal application of pharmacological manipulations. This model provides an additional means by which to investigate central pain states associated with spinal cord injury, including below-level pain. Finally, a brief discussion of at-level pain measurement is described as it has been suggested in the literature that the mechanisms underlying below- and at-level pain are different.

Collaboration


Dive into the Julie Wieseler's collaboration.

Top Co-Authors

Avatar

Linda R. Watkins

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Steven F. Maier

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Amanda Ellis

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Kenner C. Rice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Niloofar Rezvani

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew McFadden

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

David B. Sprunger

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Yingning Zhang

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge