Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Zorman is active.

Publication


Featured researches published by Julie Zorman.


Infection and Immunity | 2006

A Novel Staphylococcus aureus Vaccine: Iron Surface Determinant B Induces Rapid Antibody Responses in Rhesus Macaques and Specific Increased Survival in a Murine S. aureus Sepsis Model

Nelly Kuklin; Desmond J. Clark; Susan Secore; James L. Cook; Leslie D. Cope; Tessie McNeely; Liliane Noble; Martha Brown; Julie Zorman; Xin Min Wang; Gregory Pancari; Hongxia Fan; Kevin Isett; Bruce Burgess; Janine T. Bryan; Michelle K. Brownlow; Hugh A. George; Maria S. Meinz; Mary E. Liddell; Rosemarie Kelly; Loren D. Schultz; Donna L. Montgomery; Janet C. Onishi; Maria C. Losada; Melissa Martin; Timothy Ebert; Charles Tan; Timothy L. Schofield; Eszter Nagy; Andreas Meineke

ABSTRACT Staphylococcus aureus is a major cause of nosocomial infections worldwide, and the rate of resistance to clinically relevant antibiotics, such as methicillin, is increasing; furthermore, there has been an increase in the number of methicillin-resistant S. aureus community-acquired infections. Effective treatment and prevention strategies are urgently needed. We investigated the potential of the S. aureus surface protein iron surface determinant B (IsdB) as a prophylactic vaccine against S. aureus infection. IsdB is an iron-sequestering protein that is conserved in diverse S. aureus clinical isolates, both methicillin resistant and methicillin sensitive, and it is expressed on the surface of all isolates tested. The vaccine was highly immunogenic in mice when it was formulated with amorphous aluminum hydroxyphosphate sulfate adjuvant, and the resulting antibody responses were associated with reproducible and significant protection in animal models of infection. The specificity of the protective immune responses in mice was demonstrated by using an S. aureus strain deficient for IsdB and HarA, a protein with a high level of identity to IsdB. We also demonstrated that IsdB is highly immunogenic in rhesus macaques, inducing a more-than-fivefold increase in antibody titers after a single immunization. Based on the data presented here, IsdB has excellent prospects for use as a vaccine against S. aureus disease in humans.


Carbohydrate Research | 2003

Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus

Joseph G. Joyce; Chitrananda Abeygunawardana; Qiuwei Xu; James C. Cook; Robert W. Hepler; Craig T. Przysiecki; Karen M. Grimm; Keith Roper; Charlotte C Ip; Leslie Cope; Donna L. Montgomery; Mason Chang; Sherilyn Campie; Martha Brown; Tessie McNeely; Julie Zorman; Tomas Maira-Litran; Gerald B. Pier; Paul M. Keller; Kathrin U. Jansen; George Mark

Colonization of implanted medical devices by coagulase-negative staphylococci such as Staphylococcus epidermidis is mediated by the bacterial polysaccharide intercellular adhesin (PIA), a polymer of beta-(1-->6)-linked glucosamine substituted with N-acetyl and O-succinyl constituents. The icaADBC locus containing the biosynthetic genes for production of PIA has been identified in both S. epidermidis and S. aureus. Whereas it is clear that PIA is a constituent that contributes to the virulence of S. epidermidis, it is less clear what role PIA plays in infection with S. aureus. Recently, identification of a novel polysaccharide antigen from S. aureus termed poly N-succinyl beta-(1-->6)-glucosamine (PNSG) has been reported. This polymer was composed of the same glycan backbone as PIA but was reported to contain a high proportion of N-succinylation rather than acetylation. We have isolated a glucosamine-containing exopolysaccharide from the constitutive over-producing MN8m strain of S. aureus in order to prepare polysaccharide-protein conjugate vaccines. In this report we demonstrate that MN8m produced a high-molecular-weight (>300,000 Da) polymer of beta-(1-->6)-linked glucosamine containing 45-60% N-acetyl, and a small amount of O-succinyl (approx 10% mole ratio to monosaccharide units). By detailed NMR analyses of polysaccharide preparations, we show that the previous identification of N-succinyl was an analytical artifact. The exopolysaccharide we have isolated is active in in vitro hemagglutination assays and is immunogenic in mice when coupled to a protein carrier. We therefore conclude that S. aureus strain MN8m produces a polymer that is chemically and biologically closely related to the PIA produced by S. epidermidis.


Clinical and Vaccine Immunology | 2009

Selection and Characterization of Murine Monoclonal Antibodies to Staphylococcus aureus Iron-Regulated Surface Determinant B with Functional Activity In Vitro and In Vivo

Martha Brown; Rose Kowalski; Julie Zorman; Xin-Min Wang; Victoria Towne; Qinjian Zhao; Susan Secore; Adam C. Finnefrock; Tim Ebert; Greg Pancari; Kevin Isett; Yuhua Zhang; Annaliesa S. Anderson; Donna L. Montgomery; Leslie D. Cope; Tessie McNeely

ABSTRACT In an effort to characterize important epitopes of Staphylococcus aureus iron-regulated surface determinant B (IsdB), murine IsdB-specific monoclonal antibodies (MAbs) were isolated and characterized. A panel of 12 MAbs was isolated. All 12 MAbs recognized IsdB in enzyme-linked immunosorbent assays and Western blots; 10 recognized native IsdB expressed by S. aureus. The antigen epitope binding of eight of the MAbs was examined further. Three methods were used to assess binding diversity: MAb binding to IsdB muteins, pairwise binding to recombinant IsdB, and pairwise binding to IsdB-expressing bacteria. Data from these analyses indicated that MAbs could be grouped based on distinct or nonoverlapping epitope recognition. Also, MAb binding to recombinant IsdB required a significant portion of intact antigen, implying conformational epitope recognition. Four MAbs with nonoverlapping epitopes were evaluated for in vitro opsonophagocytic killing (OPK) activity and efficacy in murine challenge models. These were isotype switched from immunoglobulin G1 (IgG1) to IgG2b to potentially enhance activity; however, this isotype switch did not appear to enhance functional activity. MAb 2H2 exhibited OPK activity (≥50% killing in the in vitro OPK assay) and was protective in two lethal challenge models and a sublethal indwelling catheter model. MAb 13C7 did not exhibit OPK (<50% killing in the in vitro assay) and was protective in one lethal challenge model. Neither MAb 13G11 nor MAb 1G3 exhibited OPK activity in vitro or was active in a lethal challenge model. The data suggest that several nonoverlapping epitopes are recognized by the IsdB-specific MAbs, but not all of these epitopes induce protective antibodies.


Vaccine | 2014

Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

Jerzy Karczewski; Julie Zorman; Su Wang; Matthew Miezeiewski; Jinfu Xie; Keri Soring; Ioan Petrescu; Irene Rogers; David S. Thiriot; James C. Cook; Mihaela Chamberlin; Rachel Xoconostle; Debbie Nahas; Joseph G. Joyce; Jean-Luc Bodmer; Jon H. Heinrichs; Susan Secore

Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability.


Human Vaccines | 2011

Development of a rat central venous catheter model for evaluation of vaccines to prevent Staphylococcus epidermidis and Staphylococcus aureus early biofilms

Tim Ebert; Sharon Smith; Greg Pancari; Xiaoqing Wu; Julie Zorman; Desmond J. Clark; Jim Cook; Carol Burns; Joseph M. Antonello; Leslie D. Cope; Eszter Nagy; Andreas Meinke; Tessie McNeely

Indwelling central venous catheters are a common and important source of nosocomial Staphylococcus epidermidis and S. aureus infections, causing increased morbidity and mortality during hospitalization. A model was developed to reflect the clinical situation of catheter colonization by transient hematogeneously spread staphylococci, in order to investigate potential vaccine candidates. Rats were cannulated in the right jugular vein, followed by challenge through the tail vein with either S. epidermidis RP62a, or S. aureus Becker. At 24 hr post challenge, colonizing bacteria were found to be present on the catheter in an early biofilm, as evidenced by the presence of polysaccharide intercellular adhesin (PIA). For vaccination studies, rats were first immunized, surgically cannulated, and then challenged via the tail vein. At 24 hr post challenge, the catheters were harvested and cultured on mannitol salt agar plates. The catheters were scored as positive if there was outgrowth of bacterial colonies, and negative if no colonies were observed. A S. epidermidis antigen (SERP0630, MenD), and a S. aureus antigen (SACOL1138, iron regulated surface determinant B, IsdB) were found to have significant protective activity in this model, compared to mock immunized controls. Using SERP0630 as the test immunogen, it was also determined that a single vaccination of rats after cannulation was sufficient for significant catheter protection. This model may be used to evaluate antigens for protective activity against transient hematogenous spread of staphylococci resulting in catheter colonization and early biofilm formation.


Clinical and Vaccine Immunology | 2013

Development and Optimization of a Novel Assay To Measure Neutralizing Antibodies against Clostridium difficile Toxins

Jinfu Xie; Julie Zorman; Lani Indrawati; Melanie Horton; Keri Soring; Joseph M. Antonello; Yuhua Zhang; Susan Secore; Matthew Miezeiewski; Su Wang; Anthony Kanavage; Julie M. Skinner; Irene Rogers; Jean-Luc Bodmer; Jon H. Heinrichs

ABSTRACT Clostridium difficile produces two major virulence toxins, toxin A (TcdA) and toxin B (TcdB). Antitoxin antibodies, especially neutralizing antibodies, have been shown to be associated with a lower incidence of C. difficile infection (CDI) recurrence, and antibody levels are predictive of asymptomatic colonization. The development of an assay to detect the presence of neutralizing antibodies in animal and human sera for the evaluation of vaccine efficacy is highly desired. We have developed such an assay, which allows for the quantification of the effect of toxins on eukaryotic cells in an automated manner. We describe here the optimization of this assay to measure toxin potency as well as neutralizing antibody (NAb) activity against C. difficile toxins using a design-of-experiment (DOE) methodology. Toxin concentration and source, cell seeding density, and serum-toxin preincubation time were optimized in the assay using Vero cells. The assay was shown to be robust and to produce linear results across a range of antibody concentrations. It can be used to quantify neutralizing antibodies in sera of monkeys and hamsters immunized with C. difficile toxoid vaccines. This assay was shown to correlate strongly with traditional assays which rely on labor-intensive methods of determining neutralizing antibody titers by visual microscopic inspection of intoxicated-cell monolayers. This assay has utility for the selection and optimization of C. difficile vaccine candidates.


Clinical and Vaccine Immunology | 2014

Development and optimization of a high-throughput assay to measure neutralizing antibodies against Clostridium difficile binary toxin.

Jinfu Xie; Melanie Horton; Julie Zorman; Joseph M. Antonello; Yuhua Zhang; Beth A. Arnold; Susan Secore; Rachel Xoconostle; Matthew Miezeiewski; Su Wang; Colleen E. Price; David S. Thiriot; Aaron Goerke; Marie-Pierre Gentile; Julie M. Skinner; Jon H. Heinrichs

ABSTRACT Clostridium difficile strains producing binary toxin, in addition to toxin A (TcdA) and toxin B (TcdB), have been associated with more severe disease and increased recurrence of C. difficile infection in recent outbreaks. Binary toxin comprises two subunits (CDTa and CDTb) and catalyzes the ADP-ribosylation of globular actin (G-actin), which leads to the depolymerization of filamentous actin (F-actin) filaments. A robust assay is highly desirable for detecting the cytotoxic effect of the toxin and the presence of neutralizing antibodies in animal and human sera to evaluate vaccine efficacy. We describe here the optimization, using design-of-experiment (DOE) methodology, of a high-throughput assay to measure the toxin potency and neutralizing antibodies (NAb) against binary toxin. Vero cells were chosen from a panel of cells screened for sensitivity and specificity. We have successfully optimized the CDTa-to-CDTb molar ratio, toxin concentration, cell-seeding density, and sera-toxin preincubation time in the NAb assay using DOE methodology. This assay is robust, produces linear results across serial dilutions of hyperimmune serum, and can be used to quantify neutralizing antibodies in sera from hamsters and monkeys immunized with C. difficile binary toxin-containing vaccines. The assay will be useful for C. difficile diagnosis, for epidemiology studies, and for selecting and optimizing vaccine candidates.


Journal of Clinical Microbiology | 2013

Caspase Activation as a Versatile Assay Platform for Detection of Cytotoxic Bacterial Toxins

Angela Payne; Julie Zorman; Melanie Horton; Sheri A. Dubey; Jan ter Meulen; Kalpit Vora

ABSTRACT Pathogenic bacteria produce several virulence factors that help them establish infection in permissive hosts. Bacterial toxins are a major class of virulence factors and hence are attractive therapeutic targets for vaccine development. Here, we describe the development of a rapid, sensitive, and high-throughput assay that can be used as a versatile platform to measure the activities of bacterial toxins. We have exploited the ability of these toxins to cause cell death via apoptosis of sensitive cultured cell lines as a readout for measuring toxin activity. Caspases (cysteine-aspartic proteases) are induced early in the apoptotic pathway, and so we used their induction to measure the activities of Clostridium difficile toxins A (TcdA) and B (TcdB) and binary toxin (CDTa-CDTb), Corynebacterium diphtheriae toxin (DT), and Pseudomonas aeruginosa exotoxin A (PEA). Caspase induction in the cell lines, upon exposure to toxins, was optimized by toxin concentration and intoxication time, and the specificity of caspase activity was established using a genetically mutated toxin and a pan-caspase inhibitor. In addition, we demonstrate the utility of the caspase assay for measuring toxin potency, as well as neutralizing antibody (NAb) activity against C. difficile toxins. Furthermore, the caspase assay showed excellent correlation with the filamentous actin (F-actin) polymerization assay for measuring TcdA and TcdB neutralization titers upon vaccination of hamsters. These results demonstrate that the detection of caspase induction due to toxin exposure using a chemiluminescence readout can support potency and clinical immunogenicity testing for bacterial toxin vaccine candidates in development.


Archive | 2011

PROTECTIVE VACCINE BASED ON STAPHYLOCOCCUS AUREUS PROTEIN SA2412

Tessie McNeely; Sharon Smith; Julie Zorman


The FASEB Journal | 2008

Development and Characterization of Monoclonal Antibodies to Staphylococcus aureus Capsule Type 5

Hongxia Fan; Martha Brown; Rose Kowalski; James M. Cook; Marcia Kary; Robert W. Hepler; Susan Secore; Julie Zorman; Gregory Pancari; Kalpit Vora; Leslie D. Cope; Michael P. Caulfield; Tessie McNeely

Collaboration


Dive into the Julie Zorman's collaboration.

Top Co-Authors

Avatar

Tessie McNeely

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Susan Secore

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Leslie D. Cope

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Martha Brown

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Jinfu Xie

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Jon H. Heinrichs

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Antonello

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge