Julien Brevier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Brevier.
Physical Biology | 2008
Julien Brevier; David Montero; Tatyana Svitkina; Daniel Riveline
To form adherens junctions (AJ), cells first establish contact by sending out lamellipodia onto neighboring cells. We investigated the role of contacting cells in AJ assembly by studying an asymmetric AJ motif: finger-like AJ extending across the cell-cell interface. Using a cytoskeleton replica and immunofluorescence, we observed that actin bundles embedded in the lamellipodia are co-localized with stress fibers in the neighboring cell at the AJ. This suggests that donor lamellipodia present actin fingers, which are stabilized by acceptor lamellae via acto-myosin contractility. Indeed, we show that changes in actin network geometry promoted by Rac overexpression lead to corresponding changes in AJ morphology. Moreover, contractility inhibition and enhancement (via drugs or local traction) lead respectively to the disappearance and further growth of AJ fingers. Thus, we propose that receiving lamellae exert a local pull on AJ, promoting further polymerization of the donor actin bundles. In spite of different compositions, AJ and focal contacts both act as cellular mechanosensors.
Scientific Reports | 2016
Guillaume Ducourthial; Pierre Leclerc; Tigran Mansuryan; Marc Fabert; Julien Brevier; Rémi Habert; Flavie Braud; Renaud Batrin; Christine Vever-Bizet; Geneviève Bourg-Heckly; Luc Thiberville; Anne Druilhe; Alexandre Kudlinski; Frédéric Louradour
We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope’s transverse and axial resolutions amount respectively to 0.8 μm and 12 μm, with a field-of-view as large as 450 μm. This microendoscope’s unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 μm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states.
Soft Matter | 2011
Hélène Delanoë-Ayari; Julien Brevier; Daniel Riveline
Shapes and lengths are treated differently in cell biology and in physics. In cell biology, morphology is considered a powerful read-out for estimating protein activities and for classifying pathways. Spatial features are often viewed as binary signals, on or off, active or non-active. In contrast, in condensed matter physics, spatial dimensions are generally derived quantitatively with scaling relations using the mechanical properties of matter. This powerful approach allows predicting scales in new experiments. Here, we applied such a type of scaling method for specific organelles in cells: the cell adhesion structures. We show that simple relations allow one to derive measured lengths in a variety of situations and proteic complexes; if the molecular detail is not at play in such an approach, the mesoscopic equations allow one to quantitatively match the experimental observations. Based on these relations, we also predict simple rules for varying lengths of contacts and distances between contacts in future experiments.
Optics in the Life Sciences (2015), paper BT1A.2 | 2015
Pierre Leclerc; Guillaume Ducourthial; Tigran Mansuryan; Marc Fabert; Rémi Habert; Flavie Braud; Julien Brevier; Anne Druilhe; Alexandre Kudlinski; Frédéric Louradour
We report the optimization of a miniaturized multiphoton endomicroscope enabling high resolution label-free in vivo imaging of deep cellular and tissular intrinsic constituents at the output of a very long and flexible custom-designed optical fiber.
Proceedings of SPIE | 2017
Pierre Leclerc; Charles-Henri Hage; M. Fabert; Julien Brevier; Rodney P. O'Connor; Sylvia M. Bardet-Coste; Rémi Habert; Flavie Braud; Alexandre Kudlinski; Frédéric Louradour
Multiphoton microscopy is a cutting edge imaging modality leading to increasing advances in biology and also in the clinical field. To use it at its full potential and at the very heart of clinical practice, there have been several developments of fiber-based multiphoton microendoscopes. The application for those probes is now limited by few major restrictions, such as the difficulty to collect autofluorescence signals from tissues and cells theses being inherently weak (e.g. the ones from intracellular NADH or FAD metabolites). This limitation reduces the usefulness of microendoscopy in general, effectively restraining it to morphological imaging modality requiring staining of the tissues. Our aim is to go beyond this limitation, showing for the first time label-free cellular metabolism monitoring, in vivo in situ in real time. The experimental setup is an upgrade of a recently published one (Ducourthial et.al, Scientific Reports, 2016) where femtosecond pulse fiber delivery is further optimized thank’s to a new transmissive-GRISM-based pulse stretcher permitting high energy throughput and wide bandwidth. This device allows fast sequential operation with two different excitation wavelengths for efficient two-photon excited NADH and FAD autofluorescence endoscopic detection (i.e. 860 nm for FAD and 760 nm for NADH), enabling cellular optical redox ratio quantification at 8 frames/s. The obtained results on cell models in vitro and also on animal models in vivo (e.g. neurons of a living mouse) prove that we accurately assess the level of NADH and FAD at subcellular resolution through a 3-meters-long fiber with our miniaturized probe (O.D. =2.2 mm).
Proceedings of SPIE | 2017
Charles-Henri Hage; Pierre Leclerc; Marc Fabert; Julien Brevier; Rémi Habert; Flavie Braud; Alexandre Kudlinski; Frédéric Louradour
Fluorescence lifetime imaging microscopy (FLIM) represents a powerful tool for biological studies. Endoscopic FLIM applied to the intracellular native biomarker NADH and FAD represents a promising mean for in vivo in situ malignant tissue diagnosis in the medical field. Else, 2-photon-excited fluorescence (2PEF) provides increased 3D resolution and imaging depth. But very few demonstrations about 2PEF lifetime measurement through a fiber have been reported and none about endoscopic 2P-FLIM through a practical fiber length (< 3m). Our group has recently demonstrated the possibility to efficiently deliver through a very long optical fiber the short and intense excitation pulses required for 2P-FLIM. Our goal is now to check that collecting fluorescence through the same endoscopic fiber does not deteriorate the lifetime measurement. Relying on the basis previously published in case of 1PEF by P. French and co-workers (J. Biophotonics, 2015), we have experimentally quantitatively evaluated the influence on the lifetime measurement of the fiber chromatic and intermodal dispersions. The main result is that the fiber contribution to the system impulse response function, even in the case of a 3-meter long double-clad optical fiber, does not hinder the separation between free and bound NADH states using FLIM. Related calibrations and measurements will be detailed. Ongoing experiments about the development of a 2P-FLIM endomicroscope on the basis of an previously reported 2P-endomicroscope (Ducourthial et al., Sc. Reports, 2015), used under various configurations (i.e. point measurement in the center of the 2P-endomicroscope image, averaged lifetime, binned endoscopic 2P-FLIM image), will be also presented.
Ntm | 2009
Jérôme Desroches; Dominique Pagnoux; Frédéric Louradour; Eric Suran; Julien Brevier; Alain Barthélémy
For the first time polarization images using an endoscopic technique are reported. Images based on the degree of polarization measurement allow to discriminate sound and degraded regions in a type I collagen sample.
Physical Review Letters | 2007
Julien Brevier; Marcel Vallade; Daniel Riveline
Archive | 2010
Dominique Pagnoux; Frédéric Louradour; Jérôme Desroches; Alain Barthélémy; Julien Brevier
Archive | 2010
Dominique Pagnoux; Frédéric Louradour; Jérôme Desroches; Alain Barthélémy; Julien Brevier