Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Carlier is active.

Publication


Featured researches published by Julien Carlier.


Journal of Micromechanics and Microengineering | 2004

Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis

Julien Carlier; Steve Arscott; Vincent Thomy; J C Fourrier; François Caron; Jean-Christophe Camart; Christian Druon; Pierre Tabourier

We present a design for integrated lab-on-chip microsystems dedicated to mass spectrometry analysis based on the fabrication of watertight microchannels for the circulation of liquids. In this paper, we demonstrate how to fabricate complete polymer microchannels using the negative photoresist SU-8 which has the advantage of being compatible with protein analysis by mass spectrometry. Our method of fabrication requires novel technological steps involving SU-8 multi-layer processing, improved SU-8 adhesion and the use of SU-8 wafer bonding for the watertight closing of the microchannels with a Pyrex wafer. This technique also encompasses the design of various microfluidic elements such as tapered recesses for the housing of capillary tubes allowing the connection of the channels to external systems. Following this, the capillary tubes were used to test the hydrodynamic behaviour of the channels and consequently the efficiency of our technological process in achieving fully watertight structures within our flow rate and pressure specifications.


Journal of Micromechanics and Microengineering | 2006

High pressure-resistant SU-8 microchannels for monolithic porous structure integration

Julien Carlier; Katarzyna Chuda; Steve Arscott; Vincent Thomy; Bernard Verbeke; Xavier Coqueret; Jean Christophe Camart; Christian Druon; Pierre Tabourier

Integrated lab-on-chip (LOC) microsystems dedicated to proteomic analysis require specific pretreatment steps such as protein trypsic digestion, concentration, desalting or separation of biological samples. These steps can be achieved thanks to porous monolithic polymers. This paper deals with the integration of such a polymer into SU-8 microchannels by using a multi-material technology (SU-8, Pyrex and silicon). A solution for the fabrication of complete polymer microchannels which are high pressure- and solvents-resistant is proposed. This technique uses the negative photoresist SU-8 which is compatible with the protein analysis performed here. Our process requires a novel technological step using a silane coupling agent. This modification of the SU-8/Pyrex interface leads to the fabrication of a 100 µm × 160 µm section microchannel (length of 3 cm), closed with a Pyrex® lid by SU-8 bonding resistant to 80 bar. An improvement of the SU-8/monolithic structure is also demonstrated thanks to a specific treatment of the polymer enabling good anchoring of the monolith in the microchannels, and the pressure-resistance tests were also achieved with the monolithic structure integrated in the microchannels. A digestion step of a protein sample of benzoylarginine ethyl ester in a SU-8 microchannel was achieved after the functionalization of a monolith anchored in the microchannel. Analysis by UV/VIS spectroscopy of this in situ digestion has been reported.


Langmuir | 2013

Acoustic Tracking of Cassie to Wenzel Wetting Transitions

Renaud Dufour; Nadine Saad; Julien Carlier; Pierre Campistron; George Nassar; Malika Toubal; Rabah Boukherroub; Vincent Senez; B. Nongaillard; Vincent Thomy

Many applications involving superhydrophobic materials require accurate control and monitoring of wetting states and wetting transitions. Such monitoring is usually done by optical methods, which are neither versatile nor integrable. This letter presents an alternative approach based on acoustic measurements. An acoustic transducer is integrated on the back side of a superhydrophobic silicon surface on which water droplets are deposited. By analyzing the reflection of longitudinal acoustic waves at the composite liquid-solid-vapor interface, we show that it is possible to track the local evolution of the Cassie-to-Wenzel wetting transition efficiently, as induced by evaporation or the electrowetting actuation of droplets.


Journal of Applied Physics | 2012

Characterization of the state of a droplet on a micro-textured silicon wafer using ultrasound

Nadine Saad; Renaud Dufour; Pierre Campistron; G. Nassar; Julien Carlier; Maxime Harnois; B. Merheb; Rabah Boukherroub; Vincent Senez; J. Gao; Vincent Thomy; M. Ajaka; B. Nongaillard

In this work, we propose acoustic characterization as a new method to probe wetting states on a superhydrophobic surface. The analysis of the multiple reflections of a longitudinal acoustic wave from solid-liquid and solid-vapor interfaces enables to distinguish between the two well known Cassie-Baxter and Wenzel wetting configurations. The phenomenon is investigated experimentally on silicon micro-pillars superhydrophobic surfaces and numerically using a finite difference time domain method. Numerical calculations of reflection coefficients show a good agreement with experimental measurements, and the method appears as a promising alternative to optical measurement methods.


Langmuir | 2014

High-frequency acoustic for nanostructure wetting characterization.

Sizhe Li; Sebastien Lamant; Julien Carlier; Malika Toubal; Pierre Campistron; XiuMei Xu; Guy Vereecke; Vincent Senez; Vincent Thomy; B. Nongaillard

Nanostructure wetting is a key problem when developing superhydrophobic surfaces. Conventional methods do not allow us to draw conclusions about the partial or complete wetting of structures on the nanoscale. Moreover, advanced techniques are not always compatible with an in situ, real time, multiscale (from macro to nanoscale) characterization. A high-frequency (1 GHz) acoustic method is used for the first time to characterize locally partial wetting and the wetting transition between nanostructures according to the surface tension of liquids (the variation is obtained by ethanol concentration modification). We can see that this method is extremely sensitive both to the level of liquid imbibition and to the impalement dynamic. We thus demonstrate the possibility to evaluate the critical surface tension of a liquid for which total wetting occurs according to the aspect ratio of the nanostructures. We also manage to identify intermediate states according to the height of the nanotexturation. Finally, our measurements revealed that the drop impalement depending on the surface tension of the liquid also depends on the aspect ratio of the nanostructures. We do believe that our method may lead to new insights into nanoscale wetting characterization by accessing the dynamic mapping of the liquid imbibition under the droplet.


Langmuir | 2016

Evaporation of Binary Sessile Drops: Infrared and Acoustic Methods To Track Alcohol Concentration at the Interface and on the Surface

Pin Chen; Malika Toubal; Julien Carlier; Souad Harmand; B. Nongaillard; Maxence Bigerelle

Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplets surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.


IEEE Transactions on Microwave Theory and Techniques | 2002

Modeling of planar applicators for microwave thermotherapy

Julien Carlier; Vincent Thomy; Jean-Christophe Camart; L. Dubois; J. Pribetich

In order to improve the external applicators used for microwave thermotherapy controlled by microwave radiometry in medical applications, we propose specific planar applicators developed for heating: either annular ones to be used at the frequency equal to 915 MHz or in the shape of a horseshoe (short-circuited ring) for 434 MHz. The final goal of this paper is the realization of a honeycomb network for the treatment of larger areas and greater volumes.


Advanced Materials Research | 2011

High Frequency Ultrasound, a Tool for Elastic Properties Measurement of Thin Films Fabricated on Silicon

Pierre Campistron; Julien Carlier; Nadine Saad; Jamin Gao; Malika Toubal; Lucie Dupont; Georges Nassar; B. Nongaillard

The main goal of this work is to develop an ultrasonic high frequency method for characterization of thin layers. The development of high frequency acoustic transducers for longitudinal waves and shear waves on silicon has enabeled the characterization of thin films deposited on this substrate. Three types of transducers have been achieved : (i) single crystal LiNbOSubscript text3 Y+163° for shear waves generation, and (ii) Y+36° for longitudinal waves, bonded and thinned on silicon substrate to achieve ultrasonic transducers in the frequency range 300-600 MHz ; (iii) thin films ZnO transducers were realized due to sputtering technologies working in the frequency range 1 GHz- 2.5 GHz. Using an inversion method and a network analyser which provide the scattering S11 parameter of the transducer versus the frequency we deduce the elastic properties of films deposited on the wafer surface. Thanks to these transducers the acoustic properties of thin films such as SU-8 based nanocomposites (doped with TiO2 , SrTiO3 or W nanoparticles) will be presented. In order to achieve mechanical impedance matching between silicon and water we control the mass of the embedded particles which provide a way to adjust the elastic properties of the characterized material. In another application an Indium metallic layer have been characterized in the high frequency range. We also use this method to characterize dielectric permittivity of the ZnO transducers.


Ultrasonics | 2012

Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer.

Jinying Zhang; W. J. Xu; Julien Carlier; Xinming Ji; S. Queste; B. Nongaillard; Yiping Huang

BACKGROUND High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the structure design and fabrication of the kerfed ultrasonic array is quite challenging when very high frequency (≥100MHz) is required. OBJECTIVE AND METHOD Here we investigate the effect of kerf depth on the performances of array transducers. A finite element tool, COMSOL, is employed to simulate the properties of acoustic field and to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance. Furthermore, Inductively Coupled Plasma (ICP) deep etching process is used to etch 36°/Y-cut lithium niobate (LiNbO(3)) crystals and the limitation of etching aspect ratio is studied. Several arrays with different profiles are realized under optimized processes. At last, arrays with a pitch of 25μm and 40μm are fabricated and characterized by a network analyzer. RESULTS Kerf depth plays an important role in the performance of the transducer array. The crosstalk is proportional to kerf depth. When kerf depth is more than 13μm, the array with crosstalk less than -20dB, which is acceptable for the real application, could provide a desired resolution. Compared to beam focusing, kerf depth exhibits more effect on the beam steering/focusing. The lateral pressure distribution is quantitatively summarized for four types of arrays with different kerf depth. The results of half-cut array are similar to those of the full-cut one in both cases of focusing and steering/focusing. The Full-Width-at-Half-Maximum (FWHM) is 55μm for the half-cut array, and is 42μm for the full-cut one. The 5-μm-cut array, suffering from severe undesired lobes, demonstrates similar behaviors with the no-cut one. ICP process is used to etch the 36°/Y-cut LiNbO(3) film. The aspect ratio of etching profile increases with the kerf width decreasing till it stops by forming a V-shaped groove, and the positive tapered profile angle ranges between 62° and 80°. If the mask selectivity does not limit the process in terms of achievable depth, the aspect ratio is limited to values around 1.3. The measurement shows the electrical impedance and crosstalk are consistent with the numerical calculation. CONCLUSION The numerical results indicate that half-cut array is a promising alternative for the fabrication of high-frequency ultrasonic linear arrays. In fact, the minimum pitch that could be obtained is around 25μm, equivalent to a pitch of 1.6λ, with a kerf depth of 16μm under the optimized ICP parameters.


Ultrasonics | 2012

Modelling and simulation of high-frequency (100 MHz) ultrasonic linear arrays based on single crystal LiNbO3

Jinying Zhang; W. J. Xu; Julien Carlier; Xinming Ji; B. Nongaillard; S. Queste; Yiping Huang

BACKGROUND High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the fabrication of conventional backing-layer structure, which requires a pitch (distance between the centers of two adjacent elements) of half wavelength in medium, is really a great challenge. OBJECTIVE AND METHOD Here we present an alternative buffer-layer structure with a silicon lens for volumetric imaging. The requirement for the size of the pitch is less critical for this structure, making it possible to fabricate high-frequency (100MHz) ultrasonic linear array transducers. Using silicon substrate also makes it possible to integrate the arrays with IC (Integrated Circuit). To compare with the conventional backing-layer structure, a finite element tool, COMSOL, is employed to investigate the performances of acoustic beam focusing, the influence of pitch size for the buffer-layer configuration, and to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance. RESULTS For a 100MHz 10-element array of buffer-layer structure, the ultrasound beam in azimuth plane in water could be electronically focused to obtain a spatial resolution (a half-amplitude width) of 86μm at the focal depth. When decreasing from half wavelength in silicon (42μm) to half wavelength in water (7.5μm), the pitch sizes weakly affect the focal resolution. The lateral spatial resolution is increased by 4.65% when the pitch size decreases from 42μm to 7.5μm. The crosstalk between adjacent elements at the central frequency is, respectively, -95dB, -39.4dB, and -60.5dB for the 10-element buffer, 49-element buffer and 49-element backing arrays. Additionally, the electrical impedance magnitudes for each structure are, respectively, 4kΩ, 26.4kΩ, and 24.2kΩ, which is consistent with calculation results using Krimholtz, Leedom, and Matthaei (KLM) model. CONCLUSION These results show that the buffer-layer configuration is a promising alternative for the fabrication of high-frequency ultrasonic linear arrays dedicated to volumetric imaging.

Collaboration


Dive into the Julien Carlier's collaboration.

Top Co-Authors

Avatar

B. Nongaillard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

W. J. Xu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jinying Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pierre Campistron

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Druon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Georges Nassar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Camart

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge