Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien De Rouck is active.

Publication


Featured researches published by Julien De Rouck.


Coastal Engineering | 1998

Instrumentation and prototype measurements at the Zeebrugge rubble mound breakwater

Peter Troch; Julien De Rouck; Luc Van Damme

Abstract The prototype monitoring system at Zeebrugge (Belgium), instrumented for the acquisition of field data on waves interacting with a rubble mound breakwater, is presented. To date, the monitoring system has been successfully put into operation and the acquired field data used for the calibration of physical and numerical models. The instrumentation and the data acquisition sections of the monitoring system are described. Experience of more than ten years is made available to those who deal with instrumentation in harsh maritime conditions. Two instrumentation systems are presented in more detail: pore pressure sensors for the measurement of internal pore pressures and stepgauges for the measurement of the wave run-up and run-down. Algorithms used for analysis of acquired field data are included.


Proceedings of the 1998 26th International Conference on Coastal Engineering, ICCE-98 | 1999

DEVELOPMENT OF TWO-DIMENSIONAL NUMERICAL WAVE FLUME FOR WAVE INTERACTION WITH RUBBLE MOUND BREAKWATERS

Peter Troch; Julien De Rouck

Detailed studies have been undertaken to assist in the design of major extensions to the port of Haifa. Both numerical and physical model studies were done to optimise the mooring conditions vis a vis the harbour approach and entrance layout. The adopted layout deviates from the normal straight approach to the harbour entrance. This layout, together with suitable aids to navigation, was found to be nautically acceptable, and generally better with regard to mooring conditions, on the basis of extensive nautical design studies.Hwa-Lian Harbour is located at the north-eastern coast of Taiwan, where is relatively exposed to the threat of typhoon waves from the Pacific Ocean. In the summer season, harbour resonance caused by typhoon waves which generated at the eastern ocean of the Philippine. In order to obtain a better understanding of the existing problem and find out a feasible solution to improve harbour instability. Typhoon waves measurement, wave characteristics analysis, down-time evaluation for harbour operation, hydraulic model tests are carried out in this program. Under the action of typhoon waves, the wave spectra show that inside the harbors short period energy component has been damped by breakwater, but the long period energy increased by resonance hundred times. The hydraulic model test can reproduce the prototype phenomena successfully. The result of model tests indicate that by constructing a jetty at the harbour entrance or building a short groin at the corner of terminal #25, the long period wave height amplification agitated by typhoon waves can be eliminated about 50%. The width of harbour basin 800m is about one half of wave length in the basin for period 140sec which occurs the maximum wave amplification.Two-stage methodology of shoreline prediction for long coastal segments is presented in the study. About 30-km stretch of seaward coast of the Hel Peninsula was selected for the analysis. In 1st stage the shoreline evolution was assessed ignoring local effects of man-made structures. Those calculations allowed the identification of potentially eroding spots and the explanation of causes of erosion. In 2nd stage a 2-km eroding sub-segment of the Peninsula in the vicinity of existing harbour was thoroughly examined including local man-induced effects. The computations properly reproduced the shoreline evolution along this sub-segment over a long period between 1934 and 1997.In connection with the dredging and reclamation works at the Oresund Link Project between Denmark and Sweden carried out by the Contractor, Oresund Marine Joint Venture (OMJV), an intensive spill monitoring campaign has been performed in order to fulfil the environmental requirements set by the Danish and Swedish Authorities. Spill in this context is defined as the overall amount of suspended sediment originating from dredging and reclamation activities leaving the working zone. The maximum spill limit is set to 5% of the dredged material, which has to be monitored, analysed and calculated within 25% accuracy. Velocity data are measured by means of a broad band ADCP and turbidity data by four OBS probes (output in FTU). The FTUs are converted into sediment content in mg/1 by water samples. The analyses carried out, results in high acceptance levels for the conversion to be implemented as a linear relation which can be forced through the origin. Furthermore analyses verifies that the applied setup with a 4-point turbidity profile is a reasonable approximation to the true turbidity profile. Finally the maximum turbidity is on average located at a distance 30-40% from the seabed.


Journal of Computational Physics | 2007

Interactions of breaking waves with a current over cut cells

Tingqiu Li; Peter Troch; Julien De Rouck

By design of the external and internal wave-current generators, the objective of this paper is to extend our efficient Navier-Stokes solver [T. Li, P. Troch, J. De Rouck, Wave overtopping over a sea dike, J. Comput. Phys. 198 (2004) 686-726] for modelling of interactions between breaking waves and a current over a cut-cell grid, based on a dynamic subgrid-scale (SGS) model. This solver is constructed by a novel VOF finite volume approach, coupled with surface tension. When studying waves following a positive current, our external generator creates the combined inflow motions of waves and a current, which is viewed as one type of wavy inflow conditions. For cases of waves against strong currents, our internal generator describes the opposing current, by incorporating the source function to the continuity and momentum equations as a net driving force, acting on the fluid elements lying within the finite thickness source region. The outgoing waves downstream are dissipated with a breaking-type wave absorber placed in the tank extremity. Five test cases recommended are of distinctly different applications of interest, characterized by overtopping of following waves over sloping and vertical structures. Under the grid refinement effects, the results in 2D and 3D are in close agreement with the experimental data available in terms of the surface wave. Additionally, the performance of convergence in computations is also investigated, including full discussion for waves on beaches between 2D and 3D. By visualization of the motions that describe the physics of turbulence, it has been shown that our solver can capture most of the significant features in wave-current interactions varying with three different current speeds (positive, zero, negative).


Proceedings of the ASME 28th international conference on ocean, offshore and arctic engineering | 2009

Experimental investigation of the validity of linear theory to assess the behaviour of a heaving point absorber at the Belgian Continental Shelf

Griet De Backer; Marc Vantorre; Kim De Beule; Charlotte Beels; Julien De Rouck

The results of an experimental investigation on a heaving point absorber are presented. The physical tests are used to validate numerical simulations of the behaviour of the point absorber based on linear theory in the frequency and time domain. Floater response and power absorption are evaluated in regular and irregular waves representing a mild wave climate. A good correspondence is found between the physical and numerical test results. In irregular waves the difference between numerical and experimental power absorption is generally smaller than 20%. In regular waves the correspondence is good as well, except in the resonance zone; i.e. when the natural frequency of the buoy is tuned towards the resonance frequency of the incident wave. In this case, non-linear effects such as viscosity and a non-linear hydrostatic restoring force become important due to the high velocities and motion amplitudes of the point absorber. However, because of these large amplitudes, pure resonant cases are often not preferred in practical applications. In general it is concluded that the numerical results are in good accordance with the experimental results and can be used to predict the point absorber behaviour in mild energetic waves in non-resonance conditions.Copyright


Proceedings of the 1996 25th International Conference on Coastal Engineering. Part 1 (of 4) | 1997

Full scale measurements of wave attenuation inside a rubble mound breakwater

Peter Troch; Marc De Somer; Julien De Rouck; Luc Van Damme; Dierik Vermeir; Jean Pierre Martens; Conan Van Hove

A study of alternatives including a shoreline evolution numerical modelization has been carried out in order to both diagnose the erosion problem at the beaches located between Cambrils Harbour and Pixerota delta (Tarragona, Spain) and select nourishment alternatives.


Volume 6: Nick Newman Symposium on Marine Hydrodynamics; Yoshida and Maeda Special Symposium on Ocean Space Utilization; Special Symposium on Offshore Renewable Energy | 2008

Investigation of vertical slamming on point absorbers

Griet De Backer; Marc Vantorre; Sam Victor; Julien De Rouck; Charlotte Beels

This paper focuses on the impact of vertical slamming on floating point absorber systems and the associated pressures that might be expected when these phenomena occur. In a first part it will be shown how the occurrence probability of slamming can be reduced by implementing a slamming restriction, i.e. by controlling the motion of the point absorber. The impact of these slamming restrictions on power absorption will be discussed. Secondly an investigation is made of the pressures that occur when the buoys are subject to vertical bottom slamming. Analytical results are presented, which give a pressure prediction of an impacting body with conical and hemispherical shape, using Wagner theory. Laboratory experiments have been carried out at Ghent University. Impact pressures were measured during drop tests with both hemispherical and conical buoy shapes. These pressures were measured by ICP pressure sensors with a range up to 345 kPa with small membrane and very high resonance frequency (> 250 kHz). Analytical and physical results are compared and conclusions are drawn.Copyright


Journal of Coastal Research | 2007

Wave Run-Up on the Zeebrugge Rubble Mound Breakwater: Full-Scale Measurement Results Versus Laboratory Results

Julien De Rouck; Björn Van de Walle; Peter Troch; Jentsje van der Meer; Luc Van Damme; Josep R. Medina; Marc Willems; Peter Frigaard

Abstract A clear difference between full-scale wave run-up measurements and small-scale model test results had been noticed during a MAST II project. This finding initiated a thorough study of wave run-up through the European MAST III OPTICREST project. Full-scale measurements have been carried out on the Zeebrugge rubble mound breakwater. This breakwater has been modeled in three laboratories: two 2D models at a scale of 1 : 30 and one 3D model at a scale of 1 : 40 have been built at Flanders Hydraulics (Belgium), at Universidad Politécnica de Valencia (Spain), and at Aalborg University (Denmark). Wave run-up has been measured by a digital run-up gauge. This gauge has proven to measure wave run-up more accurately than the traditional wire gauge. Wave spectra measured in Zeebrugge have been reproduced in the laboratories. Results of small-scale model tests and full-scale measurement results have been compared. This comparison confirmed the MAST II outcome: wave run-up is underestimated by small-scale model tests. The difference between full-scale measurement results and small-scale model test results is the result of model effects. The porosity of the armor layer has a significant influence on wave run-up and may explain the dependency of wave run-up on the water level observed in Zeebrugge. An influence of the spectral shape has also been noticed.


Proceedings of the 1998 26th International Conference on Coastal Engineering, ICCE-98 | 1999

WAVE RUN-UP AND OVERTOPPING: PROTOTYPE VERSUS SCALE MODELS

Julien De Rouck; Raf Verdonck; Peter Troch; Luc Van Damme; Flemming Schlütter; John de Ronde

Detailed studies have been undertaken to assist in the design of major extensions to the port of Haifa. Both numerical and physical model studies were done to optimise the mooring conditions vis a vis the harbour approach and entrance layout. The adopted layout deviates from the normal straight approach to the harbour entrance. This layout, together with suitable aids to navigation, was found to be nautically acceptable, and generally better with regard to mooring conditions, on the basis of extensive nautical design studies.Hwa-Lian Harbour is located at the north-eastern coast of Taiwan, where is relatively exposed to the threat of typhoon waves from the Pacific Ocean. In the summer season, harbour resonance caused by typhoon waves which generated at the eastern ocean of the Philippine. In order to obtain a better understanding of the existing problem and find out a feasible solution to improve harbour instability. Typhoon waves measurement, wave characteristics analysis, down-time evaluation for harbour operation, hydraulic model tests are carried out in this program. Under the action of typhoon waves, the wave spectra show that inside the harbors short period energy component has been damped by breakwater, but the long period energy increased by resonance hundred times. The hydraulic model test can reproduce the prototype phenomena successfully. The result of model tests indicate that by constructing a jetty at the harbour entrance or building a short groin at the corner of terminal #25, the long period wave height amplification agitated by typhoon waves can be eliminated about 50%. The width of harbour basin 800m is about one half of wave length in the basin for period 140sec which occurs the maximum wave amplification.Two-stage methodology of shoreline prediction for long coastal segments is presented in the study. About 30-km stretch of seaward coast of the Hel Peninsula was selected for the analysis. In 1st stage the shoreline evolution was assessed ignoring local effects of man-made structures. Those calculations allowed the identification of potentially eroding spots and the explanation of causes of erosion. In 2nd stage a 2-km eroding sub-segment of the Peninsula in the vicinity of existing harbour was thoroughly examined including local man-induced effects. The computations properly reproduced the shoreline evolution along this sub-segment over a long period between 1934 and 1997.In connection with the dredging and reclamation works at the Oresund Link Project between Denmark and Sweden carried out by the Contractor, Oresund Marine Joint Venture (OMJV), an intensive spill monitoring campaign has been performed in order to fulfil the environmental requirements set by the Danish and Swedish Authorities. Spill in this context is defined as the overall amount of suspended sediment originating from dredging and reclamation activities leaving the working zone. The maximum spill limit is set to 5% of the dredged material, which has to be monitored, analysed and calculated within 25% accuracy. Velocity data are measured by means of a broad band ADCP and turbidity data by four OBS probes (output in FTU). The FTUs are converted into sediment content in mg/1 by water samples. The analyses carried out, results in high acceptance levels for the conversion to be implemented as a linear relation which can be forced through the origin. Furthermore analyses verifies that the applied setup with a 4-point turbidity profile is a reasonable approximation to the true turbidity profile. Finally the maximum turbidity is on average located at a distance 30-40% from the seabed.


Journal of Coastal Research | 2007

Wave Run-Up on the Zeebrugge Rubble Mound Breakwater: Full-Scale Measurement Results

Julien De Rouck; Björn Van de Walle; Peter Troch; Jentsje van der Meer; Luc Van Damme; Josep R. Medina; Marc Willems; Peter Frigaard

Abstract Full-scale wave run-up measurements have been carried out on the Zeebrugge rubble mound breakwater in the frame of the EU-funded OPTICREST project. Wave run-up has been measured by a run-up gauge and by a so-called spi-derweb system. The dimensionless wave run-up value Ru2%/Hm0 measured in Zeebrugge equals 1.77 for Iribarren number ξom = 3.63. An (apparent) influence of the water level on wave run-up has been observed. The porosity of the armor layer has a significant influence on wave run-up and may explain the dependency of wave run-up on the water level observed in Zeebrugge. Full-scale measurement results have been compared to literature data. The full-scale wave run-up data are in good agreement with the existing results of wave run-up tests with rip-rap slopes but are clearly higher than other wave run-up data resulting from tests with rubble mound breakwaters.


Proc. 25th I.C.C.E., Orlando, Florida, Sept. 2-6, 1996 - Ed. B.L. Edge- ASCE, New York | 1997

OVERALL SLOPE STABILITY ANALYSIS OF RUBBLE MOUND BREAKWATERS

Julien De Rouck; Luc Van Damme

A study of alternatives including a shoreline evolution numerical modelization has been carried out in order to both diagnose the erosion problem at the beaches located between Cambrils Harbour and Pixerota delta (Tarragona, Spain) and select nourishment alternatives.

Collaboration


Dive into the Julien De Rouck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefaan Gysens

Ontario Ministry of Transportation

View shared research outputs
Top Co-Authors

Avatar

L Van Damme

Ministry of Public Works

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge