Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Dine is active.

Publication


Featured researches published by Julien Dine.


Neuropsychopharmacology | 2012

Intranasally administered neuropeptide S (NPS) exerts anxiolytic effects following internalization into NPS receptor-expressing neurons.

Irina A. Ionescu; Julien Dine; Yi-Chun Yen; Dominik R. Buell; Leonie Herrmann; Florian Holsboer; Matthias Eder; Rainer Landgraf; Ulrike Schmidt

Experiments in rodents revealed neuropeptide S (NPS) to constitute a potential novel treatment option for anxiety diseases such as panic and post-traumatic stress disorder. However, both its cerebral target sites and the molecular underpinnings of NPS-mediated effects still remain elusive. By administration of fluorophore-conjugated NPS, we pinpointed NPS target neurons in distinct regions throughout the entire brain. We demonstrated their functional relevance in the hippocampus. In the CA1 region, NPS modulates synaptic transmission and plasticity. NPS is taken up into NPS receptor-expressing neurons by internalization of the receptor–ligand complex as we confirmed by subsequent cell culture studies. Furthermore, we tracked internalization of intranasally applied NPS at the single-neuron level and additionally demonstrate that it is delivered into the mouse brain without losing its anxiolytic properties. Finally, we show that NPS differentially modulates the expression of proteins of the glutamatergic system involved inter alia in synaptic plasticity. These results not only enlighten the path of NPS in the brain, but also establish a non-invasive method for NPS administration in mice, thus strongly encouraging translation into a novel therapeutic approach for pathological anxiety in humans.


Frontiers in Neural Circuits | 2012

Entorhinal theta-frequency input to the dentate gyrus trisynaptically evokes hippocampal CA1 LTP

Jens Stepan; Julien Dine; Thomas Fenzl; Stephanie Anna Polta; Gregor von Wolff; Carsten T. Wotjak; Matthias Eder

There exists substantial evidence that some forms of explicit learning in mammals require long-term potentiation (LTP) at hippocampal CA3-CA1 synapses. While CA1 LTP has been well characterized at the monosynaptic level, it still remains unclear how the afferent systems to the hippocampus can initiate formation of this neuroplastic phenomenon. Using voltage-sensitive dye imaging (VSDI) in a mouse brain slice preparation, we show that evoked entorhinal cortical (EC) theta-frequency input to the dentate gyrus highly effectively generates waves of neuronal activity which propagate through the entire trisynaptic circuit of the hippocampus (“HTC-Waves”). This flow of activity, which we also demonstrate in vivo, critically depends on frequency facilitation of mossy fiber to CA3 synaptic transmission. The HTC-Waves are rapidly boosted by the cognitive enhancer caffeine (5 μM) and the stress hormone corticosterone (100 nM). They precisely follow the rhythm of the EC input, involve high-frequency firing (>100 Hz) of CA3 pyramidal neurons, and induce NMDA receptor-dependent CA1 LTP within a few seconds. Our study provides the first experimental evidence that synchronous theta-rhythmical spiking of EC stellate cells, as occurring during EC theta oscillations, has the capacity to drive induction of CA1 LTP via the hippocampal trisynaptic pathway. Moreover, we present data pointing to a basic filter mechanism of the hippocampus regarding EC inputs and describe a methodology to reveal alterations in the “input–output relationship” of the hippocampal trisynaptic circuit.


Nature Neuroscience | 2016

Ucn3 and CRF-R2 in the medial amygdala regulate complex social dynamics

Yair Shemesh; Oren Forkosh; Mathias Mahn; Sergey Anpilov; Yehezkel Sztainberg; Sharon Manashirov; Tamar Shlapobersky; Evan Elliott; Laure Tabouy; Gili Ezra; Elaine S Adler; Yair J. Ben-Efraim; Shosh Gil; Yael Kuperman; Sharon Haramati; Julien Dine; Matthias Eder; Jan M. Deussing; Elad Schneidman; Ofer Yizhar; Alon Chen

Social encounters are associated with varying degrees of emotional arousal and stress. The mechanisms underlying adequate socioemotional balance are unknown. The medial amygdala (MeA) is a brain region associated with social behavior in mice. Corticotropin-releasing factor receptor type-2 (CRF-R2) and its specific ligand urocortin-3 (Ucn3), known components of the behavioral stress response system, are highly expressed in the MeA. Here we show that mice deficient in CRF-R2 or Ucn3 exhibit abnormally low preference for novel conspecifics. MeA-specific knockdown of Crfr2 (Crhr2) in adulthood recapitulated this phenotype. In contrast, pharmacological activation of MeA CRF-R2 or optogenetic activation of MeA Ucn3 neurons increased preference for novel mice. Furthermore, chemogenetic inhibition of MeA Ucn3 neurons elicited pro-social behavior in freely behaving groups of mice without affecting their hierarchal structure. These findings collectively suggest that the MeA Ucn3–CRF-R2 system modulates the ability of mice to cope with social challenges.


Molecular Psychiatry | 2017

CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery

M J A G Henckens; Yoav Printz; U Shamgar; Julien Dine; M Lebow; Y Drori; C Kuehne; A Kolarz; Matthias Eder; Jan M. Deussing; Nicholas J. Justice; Ofer Yizhar; Alon Chen

The bed nucleus of the stria terminalis (BNST) is critical in mediating states of anxiety, and its dysfunction has been linked to stress-related mental disease. Although the anxiety-related role of distinct subregions of the anterior BNST was recently reported, little is known about the contribution of the posterior BNST (pBNST) to the behavioral and neuroendocrine responses to stress. Previously, we observed abnormal expression of corticotropin-releasing factor receptor type 2 (CRFR2) to be associated with post-traumatic stress disorder (PTSD)-like symptoms. Here, we found that CRFR2-expressing neurons within the pBNST send dense inhibitory projections to other stress-related brain regions (for example, the locus coeruleus, medial amygdala and paraventricular nucleus), implicating a prominent role of these neurons in orchestrating the neuroendocrine, autonomic and behavioral response to stressful situations. Local CRFR2 activation by urocortin 3 depolarized the cells, increased the neuronal input resistance and increased firing of action potentials, indicating an enhanced excitability. Furthermore, we showed that CRFR2-expressing neurons within the pBNST are critically involved in the modulation of the behavioral and neuroendocrine response to stress. Optogenetic activation of CRFR2 neurons in the pBNST decreased anxiety, attenuated the neuroendocrine stress response, ameliorated stress-induced anxiety and impaired the fear memory for the stressful event. Moreover, activation following trauma exposure reduced the susceptibility for PTSD-like symptoms. Optogenetic inhibition of pBNST CRFR2 neurons yielded opposite effects. These data indicate the relevance of pBNST activity for adaptive stress recovery.


PLOS ONE | 2013

Identification of a Role for the Ventral Hippocampus in Neuropeptide S-Elicited Anxiolysis

Julien Dine; Irina A. Ionescu; Jens Stepan; Yi-Chun Yen; Florian Holsboer; Rainer Landgraf; Matthias Eder; Ulrike Schmidt

Neuropeptide S (NPS) increasingly emerges as a potential novel treatment option for anxiety diseases like panic and posttraumatic stress disorder. However, the neural underpinnings of its anxiolytic action are still not clearly understood. Recently, we reported that neurons of the ventral hippocampus (VH) take up intranasally administered fluorophore-conjugated NPS and, moreover, that application of NPS to mouse brain slices affects neurotransmission and plasticity at hippocampal CA3-CA1 synapses. Although these previous findings define the VH as a novel NPS target structure, they leave open whether this brain region is directly involved in NPS-mediated anxiolysis and how NPS impacts on neuronal activity propagation in the VH. Here, we fill this knowledge gap by demonstrating, first, that microinjections of NPS into the ventral CA1 region are sufficient to reduce anxiety-like behavior of C57BL/6N mice and, second, that NPS, via the NPS receptor, rapidly weakens evoked neuronal activity flow from the dentate gyrus to area CA1 in vitro. Additionally, we show that intranasally applied NPS alters neurotransmission and plasticity at CA3-CA1 synapses in the same way as NPS administered to hippocampal slices. Thus, our study provides, for the first time, strong experimental evidence for a direct involvement of the VH in NPS-induced anxiolysis and furthermore presents a novel mechanism of NPS action.


Cell Metabolism | 2016

CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting

Yael Kuperman; Meira Weiss; Julien Dine; Katy Staikin; Ofra Golani; Assaf Ramot; Tali Nahum; Claudia Kühne; Yair Shemesh; Wolfgang Wurst; Alon Harmelin; Jan M. Deussing; Matthias Eder; Alon Chen

Summary Signaling by the corticotropin-releasing factor receptor type 1 (CRFR1) plays an important role in mediating the autonomic response to stressful challenges. Multiple hypothalamic nuclei regulate sympathetic outflow. Although CRFR1 is highly expressed in the arcuate nucleus (Arc) of the hypothalamus, the identity of these neurons and the role of CRFR1 here are presently unknown. Our studies show that nearly half of Arc-CRFR1 neurons coexpress agouti-related peptide (AgRP), half of which originate from POMC precursors. Arc-CRFR1 neurons are innervated by CRF neurons in the hypothalamic paraventricular nucleus, and CRF application decreases AgRP+CRFR1+ neurons’ excitability. Despite similar anatomy in both sexes, only female mice selectively lacking CRFR1 in AgRP neurons showed a maladaptive thermogenic response to cold and reduced hepatic glucose production during fasting. Thus, CRFR1, in a subset of AgRP neurons, plays a regulatory role that enables appropriate sympathetic nervous system activation and consequently protects the organism from hypothermia and hypoglycemia.


The Journal of Neuroscience | 2013

Real-Time Imaging of Amygdalar Network Dynamics In Vitro Reveals a Neurophysiological Link to Behavior in a Mouse Model of Extremes in Trait Anxiety

Charilaos Avrabos; Sergey V. Sotnikov; Julien Dine; Patrick O. Markt; Florian Holsboer; Rainer Landgraf; Matthias Eder

In humans and numerous other mammalian species, individuals considerably vary in their level of trait anxiety. This well known phenomenon is closely related to the etiology of several psychiatric disorders, but its neurophysiological basis remains poorly understood. Here, we applied voltage-sensitive dye imaging to brain slices from animals of the high (HAB), normal (NAB), and low (LAB) trait anxiety mouse model and investigated whether evoked neuronal activity propagations from the lateral (LA) to the central (CeA) amygdala differ in their relative strength among HAB, NAB, and LAB mice. For this purpose, we divided a real-time measure of neuronal population activity in the CeA by a respective measure obtained for the LA. This calculation yielded the metric “CeA/LA activity.” Our data clearly demonstrate a positive correlation between trait anxiety levels evaluated by the elevated plus-maze test and CeA/LA activity. Moreover, we found reduced CeA/LA activity in HAB mice, which responded with decreased anxiety levels to an environmental enrichment and, inversely, detected increased anxiety levels and CeA/LA activity in LAB mice that experienced chronic mild stress. We did not observe differences in the spread of neuronal activity in the motor and visual cortex among HAB, NAB, and LAB animals. Collectively, these findings provide evidence that, in mammals, interindividual variability in trait anxiety is causally linked to individual variations in the physiological constitution of the LA-to-CeA circuitry that give rise to a differential regulation of neuronal signal flow through this fundamental input–output network of the amygdala.


PLOS ONE | 2015

Intranasally Applied Neuropeptide S Shifts a High-Anxiety Electrophysiological Endophenotype in the Ventral Hippocampus towards a "Normal"-Anxiety One

Julien Dine; Irina A. Ionescu; Charilaos Avrabos; Yi-Chun Yen; Florian Holsboer; Rainer Landgraf; Ulrike Schmidt; Matthias Eder

The neurobiological basis of pathological anxiety and the improvement of its pharmacological treatment are a matter of intensive investigation. Here, using electrophysiological techniques in brain slices from animals of the high anxiety-related behavior (HAB) and normal anxiety-related behavior (NAB) mouse model, we show that basal neurotransmission at ventral hippocampal CA3-CA1 synapses is weaker in HAB compared to NAB mice. We further demonstrate that paired-pulse facilitation (PPF) and long-term potentiation (LTP) at these synapses are more pronounced in slices from HAB animals. Based on previous findings, we also examined whether intranasal delivery of neuropeptide S (NPS), which increasingly emerges as a potential novel treatment option for anxiety symptoms occurring in a variety of diseases like anxiety disorders, posttraumatic stress disorder, and major depression, impacts on the high-anxiety electrophysiological endophenotype in HAB mice. Strikingly, we detected enhanced basal neurotransmission and reduced PPF and LTP in slices from NPS-treated HAB animals. Collectively, our study uncovers a multifaceted high-anxiety neurophysiological endophenotype in the murine ventral hippocampus and provides the first evidence that an intranasally applied neuropeptide can shift such an endophenotype in an anxiety-regulating brain structure towards a “normal”-anxiety one.


Frontiers in Neuroscience | 2015

Functional optical probing of the hippocampal trisynaptic circuit in vitro: network dynamics, filter properties, and polysynaptic induction of CA1 LTP

Jens Stepan; Julien Dine; Matthias Eder

Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These “trisynaptic circuit waves” involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.


Journal of Medicinal Chemistry | 2014

First photoswitchable neurotransmitter transporter inhibitor: light-induced control of γ-aminobutyric acid transporter 1 (GAT1) activity in mouse brain.

Gabriele Quandt; Georg Höfner; Jörg Pabel; Julien Dine; Matthias Eder; Klaus T. Wanner

Inhibition of mGAT1, the most abundant GABA transporter in the brain, enhances GABA signaling and alleviates symptoms of CNS disorders such as epilepsy assumed to be associated with low GABA levels. We have now developed a potent and subtype selective photoswitchable inhibitor of this transporter, which for the first time extends the photoswitch concept for the light-induced control of ligand affinity to active membrane transporters. The new inhibitor exhibited reduced activity upon irradiation with light, as demonstrated in GABA uptake assays and electrophysiological experiments with brain slices, and might be used as a tool compound for deepening the understanding of mGAT1 function in brain.

Collaboration


Dive into the Julien Dine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge