Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Fatisson is active.

Publication


Featured researches published by Julien Fatisson.


Langmuir | 2009

Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring.

Julien Fatisson; Rute F. Domingos; Kevin J. Wilkinson; Nathalie Tufenkji

Titanium dioxide (TiO2) nanoparticles introduced into subsurface environments may lead to contamination of drinking water supplies and can act as colloidal carriers for sorbed contaminants. A model laboratory system was used to examine the influence of water chemistry on the physicochemical properties of TiO2 nanoparticles and their deposition. Deposition rates of TiO2 particles onto a silica surface were measured over a broad range of solution conditions (pH and ionic strength) using a quartz crystal microbalance with energy dissipation monitoring (QCM-D). Higher particle deposition rates were observed under favorable interaction conditions (i.e., in the presence of attractive electrostatic interactions) in comparison to unfavorable deposition conditions where electrostatic repulsion dominates particle-surface interactions. Nanoparticle sizes were characterized by fluorescence correlation spectroscopy (FCS), dynamic light scattering (DLS), and atomic force microscopy (AFM). These analyses confirmed the nanoscale of the system under study as well as the presence of TiO2 aggregates in some cases. TiO2 deposition behavior onto silica measured using QCM-D was generally found to be in qualitative agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability.


Langmuir | 2010

Deposition of Carboxymethylcellulose-Coated Zero-Valent Iron Nanoparticles onto Silica: Roles of Solution Chemistry and Organic Molecules

Julien Fatisson; Subhasis Ghoshal; Nathalie Tufenkji

Zero-valent iron nanoparticles (nZVI) used in the remediation of contaminated subsurface environments are commonly stabilized using polymer coatings. A bottom-up synthesis approach was used to synthesize carboxymethylcellulose (CMC)-coated nZVI particles with increased colloidal stability. The influence of water chemistry and selected environmental molecules, namely, fulvic acids and rhamnolipids, on the aggregate size and surface charge of the bare and CMC-coated nZVI particles was systematically examined using dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and laser Doppler velocimetry. A quartz crystal microbalance with energy dissipation monitoring (QCM-D) was used to quantify the deposition rates of bare and CMC-coated nZVI particles onto a silica surface over a broad range of solution ionic strengths and in the presence of naturally occurring molecules. Nanoscale ZVI particle deposition was found to increase with IS for many of the conditions investigated. CMC acted as a better colloidal stabilizer when covalently bound to nZVI particles than when physisorbed onto the nanoparticle surface after particle synthesis. The lowest nanoparticle deposition rates were observed for CMC-coated nZVI in the presence of the rhamnolipid biosurfactant.


Biosensors and Bioelectronics | 2011

Real-time QCM-D monitoring of cellular responses to different cytomorphic agents

Julien Fatisson; Fereshteh Azari; Nathalie Tufenkji

Quartz crystal microbalance with dissipation monitoring (QCM-D) is used for real-time in situ detection of cytoskeletal changes in live primary endothelial cells in response to different cytomorphic agents; namely, the surfactant Triton-X 100 (TX-100) and bacterial lipopolysaccharide (LPS). Reproducible dissipation versus frequency (Df) plots provide unique signatures of the interactions between endothelial cells and cytomorphic agents. While the QCM-D response for TX-100 can be described in two steps (changes in the osmotic pressure of the medium prior to observing the expected cell lysis), LPS results in a different single-phase signal. A complementary analysis is carried out to evaluate the possible competitive effects of TX-100 and LPS through the QCM-D response to BAEC stress by analyzing the Df plots obtained. Experiments with non-toxic components (fibronectin or serum) produce a different QCM-D response than that observed for the toxic chemicals, suggesting the use of Df plot signatures for the possible differentiation between cytotoxic or non-cytotoxic effects. Observations obtained by QCM-D signals are confirmed by conducting fluorescence microscopy at the same time. Our results show that a fast (few minutes) sensing response can be obtained in situ and in real-time. The conclusions from this study suggest that QCM-D can potentially be used in biodetection for applications in drug screening tests and diagnosis.


Colloids and Surfaces B: Biointerfaces | 2012

Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.

Julien Fatisson; Ivan R. Quevedo; Kevin J. Wilkinson; Nathalie Tufenkji

The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity.


Water Research | 2009

Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents

Charles Poitras; Julien Fatisson; Nathalie Tufenkji

The quartz crystal microbalance with dissipation monitoring (QCM-D) is used to develop a biosensor for detection of viable Cryptosporidium parvum (C. parvum) in water matrices of varying complexity. In a clean environment, a good log-log linear response is obtained for detection of C. parvum in aqueous suspensions with oocyst concentrations from 3x10(5) to 1x10(7)oocysts/mL. C. parvum detection is slightly affected by the presence of dissolved organic acids, likely due to steric stabilization and/or masking of the antibodies/antigens by adsorbed molecules. Colloidal contaminants generally have a greater influence as biosensor interferents, whereby the presence of model latex microspheres, Enterococcus faecalis, or Escherichia coli, led to decreases in biosensor response of up to 64%, 40%, and 20%, respectively.


Langmuir | 2009

Silencing Red Blood Cell Recognition toward Anti-A Antibody by Means of Polyelectrolyte Layer-by-Layer Assembly in a Two-Dimensional Model System†

Sania Mansouri; Julien Fatisson; Zhimei Miao; Yahye Merhi; Françoise M. Winnik; Maryam Tabrizian

Silencing the antigenic response of red blood cells (RBCs) is a prerequisite toward the development of universal blood transfusion. Using a two-dimensional (2D) model whereby nonfixed RBCs are adsorbed on a human fibronectin (HFN)-coated surface, we demonstrate that the layer-by-layer (LbL) assembly technique of biocompatible polyelectrolytes can be employed to achieve the immunocamouflage of RBCs against the Anti-A antibody while maintaining the integrity and viability of the cells. The multilayered film consisted of a protecting shell (P-shell), containing five bilayers of chitosan-graft-phosphorylcholine (CH-PC) and sodium hyaluronate (HA), covered by a camouflage shell (C-shell) made up of five bilayers of poly-(L-lysine)-graft-poly(ethylene glycol) (PLL-PEG) and alginate (AL). Control experiments in which RBCs were coated by (CH-PC/HA)(10) bilayers indicated that the two polyelectrolytes alone did not prevent immunorecognition. The LbL film formation on RBCs and model substrates was monitored by quartz crystal microbalance with dissipation factor (QCM-D) and analyzed through zeta-potential measurements, atomic force microscopy (AFM), and optical microscopy. Antibody interaction with the coated RBCs was investigated by QCM-D, fluorescence microscopy, and hemolysis assays. Results from these measurements demonstrated that the hybrid LbL system built-up with different sets of polyelectrolytes was able to protect the RBCs from hemolysis and recognition by the Anti-A antibody.


Applied and Environmental Microbiology | 2011

Induction of a State of Iron Limitation in Uropathogenic Escherichia coli CFT073 by Cranberry-Derived Proanthocyanidins as Revealed by Microarray Analysis

Gabriela Hidalgo; André Ponton; Julien Fatisson; Che O'May; Bahareh Asadishad; Tim Schinner; Nathalie Tufenkji

ABSTRACT Transcriptional profiles of uropathogenic Escherichia coli CFT073 exposed to cranberry-derived proanthocyanidins (PACs) were determined. Our results indicate that bacteria grown on media supplemented with PACs were iron deprived. To our knowledge, this is the first time that PACs have been shown to induce a state of iron limitation in this bacterium.


Langmuir | 2008

Quantifying Blood Platelet Morphological Changes by Dissipation Factor Monitoring in Multilayer Shells

Julien Fatisson; Yahye Merhi; Maryam Tabrizian

The ability of electrostatically driven layer-by-layer (LbL) assembly to adapt to the morphological features of a template was explored. Subtle cytoskeletal changes in blood platelets became traceable through energy dissipation monitoring in multilayered shells using microgravimetric measurements. This LbL coating was sequentially deposited on protein-modified chips onto which platelets were adhered. In addition to consequently improving the signal sensitivity, the LbL shell acted in synergy with the cell, allowing the determination and quantification of cytoskeletal changes induced by the specific cell adhesion to the protein-modified chip surface used with a quartz crystal microbalance with dissipation. The difference in cell morphology, as a result of the optimization of specific interactions between the protein layer and cell membrane integrins induced viscoelastic changes in the polyelectrolyte shell, thereby providing quantitative data on platelet conformational changes upon their adhesion to protein-modified chip surface.


Journal of the Royal Society Interface | 2011

Determination of surface-induced platelet activation by applying time-dependency dissipation factor versus frequency using quartz crystal microbalance with dissipation

Julien Fatisson; Sania Mansouri; Daniel Yacoub; Yahye Merhi; Maryam Tabrizian

Platelet adhesion and activation rates are frequently used to assess the thrombogenicity of biomaterials, which is a crucial step for the development of blood-contacting devices. Until now, electron and confocal microscopes have been used to investigate platelet activation but they failed to characterize this activation quantitatively and in real time. In order to overcome these limitations, quartz crystal microbalance with dissipation (QCM-D) was employed and an explicit time scale introduced in the dissipation versus frequency plots (Df–t) provided us with quantitative data at different stages of platelet activation. The QCM-D chips were coated with thrombogenic and non-thrombogenic model proteins to develop the methodology, further extended to investigate polymer thrombogenicity. Electron microscopy and immunofluorescence labelling were used to validate the QCM-D data and confirmed the relevance of Df–t plots to discriminate the activation rate among protein-modified surfaces. The responses showed the predominant role of surface hydrophobicity and roughness towards platelet activation and thereby towards polymer thrombogenicity. Modelling experimental data obtained with QCM-D with a Matlab code allowed us to define the rate at which mass change occurs (A/B), to obtain an A/B value for each polymer and correlate this value with polymer thrombogenicity.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

ÉquiNanos: innovative team for nanoparticle risk management

Sylvie Nadeau; Michèle Bouchard; Maximilien Debia; Nathalie DeMarcellis-Warin; Stéphane Hallé; Victor Songmene; Marie-Christine Therrien; Kevin J. Wilkinson; B. Ateme-Nguema; Geneviève Dufour; A. Dufresne; Julien Fatisson; Sami Haddad; Madjid Hadioui; Jules Kouam; François Morency; Robert Tardif; Martin Viens; Scott Weichenthal; Claude Viau; Michel Camus

UNLABELLED Interactions between nanoparticles (NP), humans and the environment are not fully understood yet. Moreover, frameworks aiming at protecting human health have not been adapted to NP but are nonetheless applied to NP-related activities. Consequently, business organizations currently have to deal with NP-related risks despite the lack of a proven effective method of risk-management. To respond to these concerns and fulfill the needs of populations and industries, ÉquiNanos was created as a largely interdisciplinary provincial research team in Canada. ÉquiNanos consists of eight platforms with different areas of action, from adaptive decision-aid tool to public and legal governance, while including biological monitoring. ÉquiNanos resources aim at responding to the concerns of the Quebec nanotechnology industry and public health authorities. Our mandate is to understand the impact of NP on human health in order to protect the population against all potential risks emerging from these high-priority and rapidly expanding innovative technologies. FROM THE CLINICAL EDITOR In this paper by Canadian authors an important framework is discussed with the goal of acquiring more detailed information and establishing an infrastructure to evaluate the interaction between nanoparticles and living organisms, with the ultimate goal of safety and risk management of the rapidly growing fields of nanotechnology-based biological applications.

Collaboration


Dive into the Julien Fatisson's collaboration.

Top Co-Authors

Avatar

Sylvie Nadeau

École de technologie supérieure

View shared research outputs
Top Co-Authors

Avatar

Stéphane Hallé

École de technologie supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Viau

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

B. Ateme-Nguema

Université du Québec en Abitibi-Témiscamingue

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yahye Merhi

Montreal Heart Institute

View shared research outputs
Top Co-Authors

Avatar

Yves Cloutier

Institut de recherche Robert-Sauvé en santé et en sécurité du travail

View shared research outputs
Researchain Logo
Decentralizing Knowledge