Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Fourcade is active.

Publication


Featured researches published by Julien Fourcade.


Journal of Experimental Medicine | 2010

Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8+ T cell dysfunction in melanoma patients

Julien Fourcade; Zhaojun Sun; Mourad Benallaoua; Philippe Guillaume; Immanuel F. Luescher; Cindy Sander; John M. Kirkwood; Vijay K. Kuchroo; Hassane M. Zarour

The paradoxical coexistence of spontaneous tumor antigen–specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1–specific CD8+ T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1–specific CD8+ T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1+ NY-ESO-1–specific CD8+ T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3+PD-1+ NY-ESO-1–specific CD8+ T cells are more dysfunctional than Tim-3−PD-1+ and Tim-3−PD-1− NY-ESO-1–specific CD8+ T cells, producing less IFN-γ, TNF, and IL-2. Tim-3–Tim-3L blockade enhanced cytokine production by NY-ESO-1–specific CD8+ T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3–Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1–specific CD8+ T cells upon prolonged antigen stimulation and acted in synergy with PD-1–PD-L1 blockade. Collectively, our findings support the use of Tim-3–Tim-3L blockade together with PD-1–PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.


Cancer Research | 2012

CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1

Julien Fourcade; Zhaojun Sun; Ornella Pagliano; Philippe Guillaume; Immanuel F. Luescher; Cindy Sander; John M. Kirkwood; Daniel Olive; Vijay K. Kuchroo; Hassane M. Zarour

Cytotoxic T cells that are present in tumors and capable of recognizing tumor epitopes are nevertheless generally impotent in eliciting tumor rejection. Thus, identifying the immune escape mechanisms responsible for inducing tumor-specific CD8(+) T-cell dysfunction may reveal effective strategies for immune therapy. The inhibitory receptors PD-1 and Tim-3 are known to negatively regulate CD8(+) T-cell responses directed against the well-characterized tumor antigen NY-ESO-1. Here, we report that the upregulation of the inhibitory molecule BTLA also plays a critical role in restricting NY-ESO-1-specific CD8(+) T-cell expansion and function in melanoma. BTLA-expressing PD-1(+)Tim-3(-) CD8(+) T cells represented the largest subset of NY-ESO-1-specific CD8(+) T cells in patients with melanoma. These cells were partially dysfunctional, producing less IFN-γ than BTLA(-) T cells but more IFN-γ, TNF, and interleukin-2 than the highly dysfunctional subset expressing all three receptors. Expression of BTLA did not increase with higher T-cell dysfunction or upon cognate antigen stimulation, as it does with PD-1, suggesting that BTLA upregulation occurs independently of functional exhaustion driven by high antigen load. Added with PD-1 and Tim-3 blockades, BTLA blockade enhanced the expansion, proliferation, and cytokine production of NY-ESO-1-specific CD8(+) T cells. Collectively, our findings indicate that targeting BTLA along with the PD-1 and Tim-3 pathways is critical to reverse an important mechanism of immune escape in patients with advanced melanoma.


Journal of Clinical Investigation | 2015

TIGIT and PD-1 impair tumor antigen–specific CD8 + T cells in melanoma patients

Joe-Marc Chauvin; Ornella Pagliano; Julien Fourcade; Zhaojun Sun; Hong Wang; Cindy Sander; John M. Kirkwood; Tseng-Hui Timothy Chen; Mark Maurer; Alan J. Korman; Hassane M. Zarour

T cell Ig and ITIM domain (TIGIT) is an inhibitory receptor expressed by activated T cells, Tregs, and NK cells. Here, we determined that TIGIT is upregulated on tumor antigen-specific (TA-specific) CD8⁺ T cells and CD8⁺ tumor-infiltrating lymphocytes (TILs) from patients with melanoma, and these TIGIT-expressing CD8⁺ T cells often coexpress the inhibitory receptor PD-1. Moreover, CD8⁺ TILs from patients exhibited downregulation of the costimulatory molecule CD226, which competes with TIGIT for the same ligand, supporting a TIGIT/CD226 imbalance in metastatic melanoma. TIGIT marked early T cell activation and was further upregulated by T cells upon PD-1 blockade and in dysfunctional PD-1⁺TIM-3⁺ TA-specific CD8⁺ T cells. PD-1⁺TIGIT⁺, PD-1⁻TIGIT⁺, and PD-1⁺TIGIT⁻ CD8⁺ TILs had similar functional capacities ex vivo, suggesting that TIGIT alone, or together with PD-1, is not indicative of T cell dysfunction. However, in the presence of TIGIT ligand-expressing cells, TIGIT and PD-1 blockade additively increased proliferation, cytokine production, and degranulation of both TA-specific CD8⁺ T cells and CD8⁺ TILs. Collectively, our results show that TIGIT and PD-1 regulate the expansion and function of TA-specific CD8⁺ T cells and CD8⁺ TILs in melanoma patients and suggest that dual TIGIT and PD-1 blockade should be further explored to elicit potent antitumor CD8⁺ T cell responses in patients with advanced melanoma.


Journal of Immunology | 2009

PD-1 Is a Regulator of NY-ESO-1-Specific CD8+ T Cell Expansion in Melanoma Patients

Julien Fourcade; Pavol Kudela; Zhaojun Sun; Hongmei Shen; Stephanie R. Land; Diana Lenzner; Philippe Guillaume; Immanuel F. Luescher; Cindy Sander; Soldano Ferrone; John M. Kirkwood; Hassane M. Zarour

The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8+ T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8+ T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8+ T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8+ T cells, NY-ESO-1-specific CD8+ T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8+ T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1+ APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8+ T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8+ T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8+ T cell numbers and functions, increasing the likelihood of tumor regression.


Cancer Research | 2014

PD-1 and Tim-3 Regulate the Expansion of Tumor Antigen–Specific CD8+ T Cells Induced by Melanoma Vaccines

Julien Fourcade; Zhaojun Sun; Ornella Pagliano; Joe Marc Chauvin; Cindy Sander; Bratislav Janjic; Ahmad A. Tarhini; Hussein Tawbi; John M. Kirkwood; Stergios J. Moschos; Hong Wang; Philippe Guillaume; Immanuel F. Luescher; Arthur M. Krieg; Ana C. Anderson; Vijay K. Kuchroo; Hassane M. Zarour

Although melanoma vaccines stimulate tumor antigen-specific CD8(+) T cells, objective clinical responses are rarely observed. To investigate this discrepancy, we evaluated the character of vaccine-induced CD8(+) T cells with regard to the inhibitory T-cell coreceptors PD-1 and Tim-3 in patients with metastatic melanoma who were administered tumor vaccines. The vaccines included incomplete Freunds adjuvant, CpG oligodeoxynucleotide (CpG), and the HLA-A2-restricted analog peptide NY-ESO-1 157-165V, either by itself or in combination with the pan-DR epitope NY-ESO-1 119-143. Both vaccines stimulated rapid tumor antigen-specific CD8(+) T-cell responses detected ex vivo, however, tumor antigen-specific CD8(+) T cells produced more IFN-γ and exhibited higher lytic function upon immunization with MHC class I and class II epitopes. Notably, the vast majority of vaccine-induced CD8(+) T cells upregulated PD-1 and a minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by vaccine-induced CD8(+) T cells at the time of vaccine administration correlated inversely with their expansion in vivo. Dual blockade of PD-1 and Tim-3 enhanced the expansion and cytokine production of vaccine-induced CD8(+) T cells in vitro. Collectively, our findings support the use of PD-1 and Tim-3 blockades with cancer vaccines to stimulate potent antitumor T-cell responses and increase the likelihood of clinical responses in patients with advanced melanoma.


Journal of Immunotherapy | 2008

Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients.

Julien Fourcade; Pavol Kudela; Pedro A. Andrade Filho; Bratislav Janjic; Stephanie R. Land; Cindy Sander; Arthur M. Krieg; Albert D. Donnenberg; Hongmei Shen; John M. Kirkwood; Hassane M. Zarour

Analog peptides represent a promising tool to further optimize peptide-based vaccines in promoting the expansion of tumor antigen-specific cytotoxic T lymphocytes. Here, we report the results of a pilot trial designed to study the immunogenicity of the analog peptide NY-ESO-1 157-165V in combination with CpG 7909/PF3512676 and Montanide ISA 720 in patients with stage III/IV NY-ESO-1–expressing melanoma. Eight patients were immunized either with Montanide and CpG (arm 1, 3 patients); Montanide and peptide NY-ESO-1 157-165V (arm 2, 2 patients); or with Montanide, CpG, and peptide NY-ESO-1 157-165V (arm 3, 3 patients). Only the 3 patients immunized with Montanide, CpG, and peptide NY-ESO-1 157-165V in arm 3 developed a rapid increase of effector-memory NY-ESO-1–specific CD8+ T cells, detectable ex vivo. The majority of these cells exhibited an intermediate/late-stage differentiated phenotype (CD28−). Our study further demonstrated that our vaccine approach stimulated spontaneous tumor-reactive NY-ESO-1–specific CD8+ T cells in 2 patients with advanced disease, but failed to prime tumor-reactive NY-ESO-1–specific T cells in 1 patient with no spontaneously tumor-induced CD8+ T-cell responses to NY-ESO-1. Collectively, our data support the capability of the analog peptide NY-ESO-1 157-165V in combination with CpG and Montanide to promote the expansion of NY-ESO-1–specific CD8+ T cells in patients with advanced cancer. They also suggest that the presence of tumor-induced NY-ESO-1–specific T cells of well-defined clonotypes is critical for the expansion of tumor-reactive NY-ESO-1–specific CD8+ T cells after peptide-based vaccine strategies.


Journal of Immunology | 2010

Human Tumor Antigen-Specific Helper and Regulatory T Cells Share Common Epitope Specificity but Exhibit Distinct T Cell Repertoire

Julien Fourcade; Zhaojun Sun; Pavol Kudela; Bratislav Janjic; John M. Kirkwood; Talal El-Hafnawy; Hassane M. Zarour

CD4+ regulatory T cells (Tregs) accumulate at tumor sites and play a critical role in the suppression of immune responses against tumor cells. In this study, we show that two immunodominant epitopes derived from the tumor Ags (TAs) NY-ESO-1 and TRAG-3 stimulate both CD4+ Th cells and Tregs. TA-specific Tregs inhibit the proliferation of allogenic T cells, act in a cell-to-cell contact dependent fashion and require activation to suppress IL-2 secretion by T cells. TRAG-3 and NY-ESO-1–specific Tregs exhibit either a Th1-, a Th2-, or a Th0-type cytokine profile and dot not produce IL-10 or TGF-β. The Foxp3 levels vary from one Treg clone to another and are significantly lower than those of CD4+CD25high Tregs. In contrast to NY-ESO-1–specific Th cells, the NY-ESO-1–specific and TRAG-3–specific Treg clonotypes share a common TCR CDR3 Vβ usage with Foxp3+CD4+CD25high and CD4+CD25− T cells and were not detectable in PBLs of other melanoma patients and of healthy donors, suggesting that their recruitment occurs through the peripheral conversion of CD4+CD25− T cells upon chronic Ag exposure. Collectively, our findings demonstrate that the same epitopes spontaneously stimulate both Th cells and Tregs in patients with advanced melanoma. They also suggest that TA-specific Treg expansion may be better impaired by therapies aimed at depleting CD4+CD25high Tregs and preventing the peripheral conversion of CD4+CD25− T cells.


Cancer Research | 2015

IL10 and PD-1 Cooperate to Limit the Activity of Tumor-Specific CD8+ T Cells

Zhaojun Sun; Julien Fourcade; Ornella Pagliano; Joe-Marc Chauvin; Cindy Sander; John M. Kirkwood; Hassane M. Zarour

Immune checkpoint inhibitors show great promise as therapy for advanced melanoma, heightening the need to determine the most effective use of these agents. Here, we report that programmed death-1(high) (PD-1(high)) tumor antigen (TA)-specific CD8(+) T cells present at periphery and at tumor sites in patients with advanced melanoma upregulate IL10 receptor (IL10R) expression. Multiple subsets of peripheral blood mononucleocytes from melanoma patients produce IL10, which acts directly on IL10R(+) TA-specific CD8(+) T cells to limit their proliferation and survival. PD-1 blockade augments expression of IL10R by TA-specific CD8(+) T cells, thereby increasing their sensitivity to the immunosuppressive effects of endogenous IL10. Conversely, IL10 blockade strengthened the effects of PD-1 blockade in expanding TA-specific CD8(+) T cells and reinforcing their function. Collectively, our findings offer a rationale to block both IL10 and PD-1 to strengthen the counteraction of T-cell immunosuppression and to enhance the activity of TA-specific CD8(+) T cell in advanced melanoma patients.


Journal of Immunology | 2006

Spontaneous CD4+ T Cell Responses against TRAG-3 in Patients with Melanoma and Breast Cancers

Bratislav Janjic; Pedro Andrade; Xiaofei Wang; Julien Fourcade; Christine Almunia; Pavol Kudela; Adam Brufsky; Samuel A. Jacobs; David M. Friedland; Ronald G. Stoller; Daniel Gillet; Ronald B. Herberman; John M. Kirkwood; Bernard Maillere; Hassane M. Zarour

The taxol resistance gene TRAG-3 was initially isolated from cancer cell lines that became resistant to taxol in vitro. TRAG-3 is a cancer germline Ag expressed by tumors of different histological types including the majority of melanoma, breast, and lung cancers. In the present study, we report that patients with stage IV melanoma and breast cancers developed spontaneous IFN-γ-producing CD4+ T cell responses against a single immunodominant and promiscuous peptide epitope from TRAG-3 presented in the context of multiple HLA-DR molecules. The TRAG-3-specific CD4+ T cells and clones were expanded in vitro and recognized not only peptide pulsed APCs but also autologous dendritic cells (DCs) loaded with the TRAG-3 protein. All stage IV melanoma patients with TRAG-3-expressing tumors developed spontaneous CD4+ T cell responses against TRAG-3, demonstrating its strong immunogenicity. None of these patients had detectable IgG Ab responses against TRAG-3. TCRβ gene usage studies of TRAG-3-specific CD4+ T cell clones from a melanoma patient and a normal donor suggested a restricted TCR repertoire in patients with TRAG-3-expressing tumors. Altogether, our data define a novel profile of spontaneous immune responses to cancer germline Ag-expressing tumors, showing that spontaneous TRAG-3-specific CD4+ T cells are directed against a single immunodominant epitope and exist independently of Ab responses. Because of its immunodominance, peptide TRAG-334–48 is of particular interest for the monitoring of spontaneous immune responses in patients with TRAG-3-expressing tumors and for the development of cancer vaccines.


Journal of Immunology | 2007

Cross-Reactive CD4+ T Cells against One Immunodominant Tumor-Derived Epitope in Melanoma Patients

Pavol Kudela; Bratislav Janjic; Julien Fourcade; Florence Castelli; Pedro Andrade; John M. Kirkwood; Massimo Amicosante; Bernard Maillere; Hassane M. Zarour

TCRs exhibit a high degree of specificity but may also recognize multiple and distinct peptide-MHC complexes, illustrating the so-called cross-reactivity of TCR-peptide-MHC recognition. In this study, we report the first evidence of CD4+ T cells recognizing the same tumor peptide-epitope from NY-ESO-1, in the context of multiple HLA-DR and HLA-DP molecules. These cross-reactive CD4+ T cells recognized not only autologous but also allogenic dendritic cells previously loaded with the relevant protein (i.e., the normally processed and presented epitope). Using clonotypic real-time RT-PCR, we have detected low frequencies of CD4+ T cells expressing one cross-reactive TCR from circulating CD4+ T cells of patients with stage IV melanoma either spontaneously or after immunization but not in normal donors. The maintenance of cross-reactive tumor Ag-specific CD4+ T cells in PBLs of cancer patients required the presence of tumor Ag/epitope in the context of the MHC molecule used to prime the Ag-specific CD4+ T cells. Our findings have significant implications for the optimization of TCR gene transfer immunotherapies widely applicable to cancer patients.

Collaboration


Dive into the Julien Fourcade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaojun Sun

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Cindy Sander

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijay K. Kuchroo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Philippe Guillaume

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge