Julien Idé
University of Mons
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Idé.
Journal of the American Chemical Society | 2014
Julien Idé; Raphaël Méreau; Laurent Ducasse; Frédéric Castet; Harald Bock; Yoann Olivier; Jérôme Cornil; David Beljonne; Gabriele D'Avino; Otello Maria Roscioni; Luca Muccioli; Claudio Zannoni
The semiconducting and self-assembling properties of columnar discotic liquid crystals have stimulated intense research toward their application in organic solar cells, although with a rather disappointing outcome to date in terms of efficiencies. These failures call for a rational strategy to choose those molecular design features (e.g., lattice parameter, length and nature of peripheral chains) that could optimize solar cell performance. With this purpose, in this work we address for the first time the construction of a realistic planar heterojunction between a columnar donor and acceptor as well as a quantitative measurement of charge separation and recombination rates using state of the art computational techniques. In particular, choosing as a case study the interface between a perylene donor and a benzoperylene diimide acceptor, we attempt to answer the largely overlooked question of whether having well-matching donor and acceptor columns at the interface is really beneficial for optimal charge separation. Surprisingly, it turns out that achieving a system with contiguous columns is detrimental to the solar cell efficiency and that engineering the mismatch is the key to optimal performance.
Journal of Physical Chemistry B | 2011
Julien Idé; Raphaël Méreau; Laurent Ducasse; Frédéric Castet; Yoann Olivier; Nicolas G. Martinelli; Jérôme Cornil; David Beljonne
Molecular dynamics (MD) simulations have been coupled to valence bond/Hartree-Fock (VB/HF) quantum-chemical calculations to evaluate the impact of diagonal and off-diagonal disorder on charge carrier mobilities in self-assembled one-dimensional stacks of a perylene diimide (PDI) derivative. The relative distance and orientation of the PDI cores probed along the MD trajectories translate into fluctuations in site energies and transfer integrals that are calculated at the VB/HF level. The charge carrier mobilities, as obtained from time-of-flight numerical simulations, span several orders of magnitude depending on the relative time scales for charge versus molecular motion. Comparison to experiment suggests that charge transport in the crystal phase is limited by the presence of static defects.
Journal of Materials Chemistry C | 2014
Julien Idé; Daniele Fazzi; Mosè Casalegno; Stefano Valdo Meille; Guido Raos
We present an extensive study of electron transport (ET) in several crystal forms of phenyl-C61-butyric acid methyl ester (PCBM) and 1-thienyl-C61-butyric acid methyl ester (ThCBM) fullerene derivatives. Our calculations are based on a localized representation of the electronic states. Orbital couplings, site energies and reorganization energies have been calculated using various density functional and semi-empirical techniques and used within the Landau–Zener, Marcus and Marcus–Levich–Jortner expressions to evaluate electron transfer rates. Electron mobilities have been then estimated by kinetic Monte Carlo (KMC) simulations. The adiabaticity of electron transfer directions within the different crystal structures has also been verified using the Landau–Zener expression. Finally, the role of low energy virtual orbitals of the fullerene molecules has been investigated using charge transport networks of increasing complexities. Our results show that these molecules may form one-, two- or three-dimensional percolation networks and that their higher energy orbitals often participate in ET. The highest mobility values were obtained for the crystal structure of ThCBM and are comparable to experimental values.
Journal of Physical Chemistry Letters | 2012
Sébastien Mothy; Maxime Guillaume; Julien Idé; Frédéric Castet; Laurent Ducasse; Jérôme Cornil; David Beljonne
Quantum-chemical techniques are applied to assess the electronic structure at donor/acceptor heterojunctions of interest for organic solar cells. We show that electrostatic effects at the interface of model 1D stacks profoundly modify the energy landscape explored by charge carriers in the photoconversion process and that these can be tuned by chemical design. When fullerene C60 molecules are used as acceptors and unsubstituted oligothiophenes or pentacene are used as donors, the uncompensated quadrupolar electric field at the interface provides the driving force for splitting of the charge-transfer states into free charges. This quadrupolar field can be either enhanced by switching from a C60 to a perylene-tetracarboxylic-dianhydride (PTCDA) acceptor or suppressed by grafting electron-withdrawing groups on the donor.
Soft Matter | 2016
Alaric Desmarchelier; Bruno Giordano Alvarenga; Xavier Caumes; Ludovic Dubreucq; Claire Troufflard; Martine Tessier; Nicolas Vanthuyne; Julien Idé; Thomas Maistriaux; David Beljonne; Patrick Brocorens; Roberto Lazzaroni; Matthieu Raynal; Laurent Bouteiller
As the benzene 1,3,5-tricarboxamide (BTA) moiety is commonly used as the central assembling unit for the construction of functionalized supramolecular architectures, strategies to tailor the nature and stability of BTA assemblies are needed. The assembly properties of a library of structurally simple BTAs derived from amino dodecyl esters (ester BTAs, 13 members) have been studied, either in the bulk or in cyclohexane solutions, by means of a series of analytical methods (NMR, DSC, POM, FT-IR, UV-Vis, CD, ITC, high-sensitivity DSC, SANS). Two types of hydrogen-bonded species have been identified and characterized: the expected amide-bonded helical rods (or stacks) that are structurally similar to those formed by BTAs with simple alkyl side chains (alkyl BTAs), and ester-bonded dimers in which the BTAs are connected by means of hydrogen bonds linking the amide N-H and the ester C[double bond, length as m-dash]O. MM/MD calculations coupled with simulations of CD spectra allow for the precise determination of the molecular arrangement and of the hydrogen bond pattern of these dimers. Our study points out the crucial influence of the substituent attached on the amino-ester α-carbon on the relative stability of the rod-like versus dimeric assemblies. By varying this substituent, one can precisely tune the nature of the dominant hydrogen-bonded species (stacks or dimers) in the neat compounds and in cyclohexane over a wide range of temperatures and concentrations. In the neat BTAs, stacks are stable up to 213 °C and dimers above 180 °C whilst in cyclohexane stacks form at c* > 3 × 10-5 M at 20 °C and dimers are stable up to 80 °C at 7 × 10-6 M. Ester BTAs that assemble into stacks form a liquid-crystalline phase and yield gels or viscous solutions in cyclohexane, demonstrating the importance of controlling the structure of these assemblies. Our systematic study of these structurally similar ester BTAs also allows for a better understanding of how a single atom or moiety can impact the nature and stability of BTA aggregates, which is of importance for the future development of functionalized BTA supramolecular polymers.
ACS Nano | 2017
Pim W. J. M. Frederix; Julien Idé; Yigit Altay; Gaël Schaeffer; Mathieu Surin; David Beljonne; Anna S. Bondarenko; Thomas L. C. Jansen; Sijbren Otto; Siewert J. Marrink
Self-replication at the molecular level is often seen as essential to the early origins of life. Recently a mechanism of self-replication has been discovered in which replicator self-assembly drives the process. We have studied one of the examples of such self-assembling self-replicating molecules to a high level of structural detail using a combination of computational and spectroscopic techniques. Molecular Dynamics simulations of self-assembled stacks of peptide-derived replicators provide insights into the structural characteristics of the system and serve as the basis for semiempirical calculations of the UV–vis, circular dichroism (CD) and infrared (IR) absorption spectra that reflect the chiral organization and peptide secondary structure of the stacks. Two proposed structural models are tested by comparing calculated spectra to experimental data from electron microscopy, CD and IR spectroscopy, resulting in a better insight into the specific supramolecular interactions that lead to self-replication. Specifically, we find a cooperative self-assembly process in which β-sheet formation leads to well-organized structures, while also the aromatic core of the macrocycles plays an important role in the stability of the resulting fibers.
Journal of Physical Chemistry C | 2017
Mosè Casalegno; Raffaele Pastore; Julien Idé; Riccardo Po; Guido Raos
The high efficiency of charge generation within organic photovoltaic blends apparently contrasts with the strong “classical” attraction between newly formed electron–hole pairs. Several factors have been identified as possible facilitators of charge dissociation, such as quantum mechanical coherence and delocalization, structural and energetic disorder, built-in electric fields, and nanoscale intermixing of the donor and acceptor components of the blends. Our mesoscale quantum-chemical model allows an unbiased assessment of their relative importance, through excited-state calculations on systems containing thousands of donor and acceptor sites. The results on several model heterojunctions confirm that the classical model severely overestimates the binding energy of the electron–hole pairs, produced by vertical excitation from the electronic ground state. Using physically sensible parameters for the individual materials, we find that the quantum mechanical energy difference between the lowest interfacial c...
Chemical Communications | 2016
Jenifer Rubio-Magnieto; Mohit Kumar; Patrick Brocorens; Julien Idé; Subi J. George; Roberto Lazzaroni; Mathieu Surin
Templated cooperative binding induced assembly of chromophores is achieved via interactions between Zn-complexes and the DNA phosphodiester backbone. The chromophores are organized in left-handed (M)-helices via double-zipper assembly with the DNA templates.
Journal of Physical Chemistry C | 2010
David Beljonne; Jérôme Cornil; Kelly Lancaster; Jean-Luc Brédas; Stijn Verlaak; Alexander Mityashin; Paul Heremans; Andreas Fuchs; Christian Lennartz; Julien Idé; Raphaël Méreau; Philippe Aurel; Laurent Ducasse; Frédéric Castet
Journal of Physical Chemistry C | 2010
Nicolas G. Martinelli; Julien Idé; Roel S. Sánchez-Carrera; Veaceslav Coropceanu; Jean-Luc Brédas; Laurent Ducasse; Frédéric Castet; Jérôme Cornil; David Beljonne