Julien Kimmig
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Kimmig.
Journal of Paleontology | 2015
Julien Kimmig; Brian R. Pratt
Abstract. A new Burgess Shale-type Lagerstätte is described from the middle Cambrian (Series 3, Drumian) Rockslide Formation of the Mackenzie Mountains, Northwest Territories, Canada. The Rockslide Formation is a unit of deeper water ramp to slope, mixed carbonate, and siliciclastic facies deposited on the northwestern margin of Laurentia. At the fossil-bearing locality, the unit onlaps a fault scarp cutting lower Cambrian sandstones. There it consists of a succession of shale and thick-laminated to thin-bedded lime mudstone, calcareous sandstone, and greenish-colored calcareous mudstone, overlain by shallower water dolostones of the Avalanche Formation, which is indicative of an overall progradational sequence. The Rockslide Formation is of similar age to the Wheeler and Marjum formations of Utah, belonging to the Bolaspidella Biozone. Only two 1 m thick units of greenish mudstone exhibit soft-bodied preservation, with most specimens coming from the lower interval. However, the biota is common but not as diverse as that of other Lagerstätten such as the Burgess Shale in its type area. The shelly fauna is dominated by the hyolith Haplophrentis carinatus Matthew, 1899 along with sparse linguliformean brachiopods, agnostoid arthropods, and ptychoparioid trilobites. The nonmineralized biota includes the macrophytic alga Margaretia dorus Walcott, 1911, priapulid worms, and the carapaces of a number of arthropods. The arthropods belong to Isoxys mackenziensis n. sp., Tuzoia cf. T. guntheri Robison and Richards, 1981; Branchiocaris? sp., Perspicaris? dilatus Robison and Richards, 1981; and bradoriids, along with fragments of arthropods of indeterminate affinities. The style of preservation indicates that most soft parts underwent complete biodegradation, leaving just the more resistant materials such as chitinous arthropod cuticles. The range of preservation and similarity to the coeval biotas preserved in Utah suggests that the composition of this Lagerstätte is probably representative of the community living on the relatively deep-water ramp or slope during middle Cambrian time in Laurentia. This would argue that the extraordinary diversity of the Burgess Shale at Mount Field is anomalous.
PeerJ | 2017
Bruce S. Lieberman; Richard Kurkewicz; Heather E. Shinogle; Julien Kimmig; Breandán Anraoi MacGabhann
The morphology and affinities of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian (Series 2: Stage 4, Dyeran) Carrara Formation are discussed. These specimens show some similarity to the Ordovician Discophyllum Hall, 1847; traditionally this taxon had been treated as a fossil porpitid. However, recently it has instead been referred to as another clade, the eldonids, which includes the enigmatic Eldonia Walcott, 1911 that was originally described from the Cambrian Burgess Shale. The status of various Proterozoic and Phanerozoic taxa previously referred to porpitids and eldonids is also briefly considered. To help ascertain that the specimens were not dubio- or pseudofossils, elemental mapping using energy dispersive X-ray spectroscopy (EDS) was conducted. This, in conjunction with the morphology of the specimens, indicated that the fossils were not hematite, iron sulfide, pyrolusite, or other abiologic mineral precipitates. Instead, their status as biologic structures and thus actual fossils is supported. Enrichment in the element carbon, and also possibly to some extent the elements magnesium and iron, seems to be playing some role in the preservation process.
Biology Letters | 2018
Luke C. Strotz; Marianna V. P. Simões; Matthew G. Girard; Laura C.V. Breitkreuz; Julien Kimmig; Bruce S. Lieberman
The Red Queen hypothesis (RQH) is both familiar and murky, with a scope and range that has broadened beyond its original focus. Although originally developed in the palaeontological arena, it now encompasses many evolutionary theories that champion biotic interactions as significant mechanisms for evolutionary change. As such it de-emphasizes the important role of abiotic drivers in evolution, even though such a role is frequently posited to be pivotal. Concomitant with this shift in focus, several studies challenged the validity of the RQH and downplayed its propriety. Herein, we examine in detail the assumptions that underpin the RQH in the hopes of furthering conceptual understanding and promoting appropriate application of the hypothesis. We identify issues and inconsistencies with the assumptions of the RQH, and propose a redefinition where the Red Queens reign is restricted to certain types of biotic interactions and evolutionary patterns occurring at the population level.
Lethaia | 2016
Julien Kimmig; Brian R. Pratt
Bulletin of Geosciences | 2017
Julien Kimmig; Luke C. Strotz
PALAIOS | 2018
Julien Kimmig; Brian R. Pratt
Journal of Paleontology | 2017
Julien Kimmig; Luke C. Strotz; Bruce S. Lieberman
Proceedings of the Royal Society B: Biological Sciences | 2018
Luke C. Strotz; Erin E. Saupe; Julien Kimmig; Bruce S. Lieberman
Archive | 2018
Luke C. Strotz; Erin E. Saupe; Julien Kimmig; Bruce S. Lieberman
Geological Magazine | 2018
Julien Kimmig; Ronald C. Meyer; Bruce S. Lieberman