Julien Laurent
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Laurent.
Journal of Translational Medicine | 2015
Michel M. van den Heuvel; Marcel Verheij; Rogier Boshuizen; J. Belderbos; Anne-Marie C. Dingemans; Dirk De Ruysscher; Julien Laurent; Robert Tighe; John B. A. G. Haanen; Sonia Quaratino
BackgroundNHS-IL2 (selectikine, EMD 521873, MSB0010445) consists of human NHS76 (antibody specific for necrotic DNA) fused to genetically modified human interleukin 2 (IL-2) and selectively activates the high-affinity IL-2 receptor. Based on an evolving investigational concept to prime the tumor microenvironment with ionizing radiation prior to initiating immunotherapy, 2 related studies were conducted and are reported here. The first, a preclinical study, tests the systemic effect of the immunocytokine NHS-IL2 and radiotherapy in a lung carcinoma animal model; the second, a phase Ib trial in patients with metastatic non-small cell lung carcinoma (NSCLC), was designed to determine the safety and tolerability of NHS-IL2 in combination with radiotherapy directly following first-line palliative chemotherapy.MethodsTumor-bearing C57Bl/6 mice were treated with NHS-IL2 alone (5 mg/kg; days 7–9), fractionated radiotherapy (3.6 Gy; days 0–4) plus cisplatin (4 mg/kg; day 0), or the triple combination. Metastatic NSCLC patients who achieved disease control with first-line palliative chemotherapy were enrolled in the phase Ib trial. Patients received local irradiation (5x 4 Gy) of a single pulmonary nodule. Dose-escalated NHS-IL2 was administered as 1-h intravenous infusion on 3 consecutive days every 3 weeks.ResultsNHS-IL2 plus radiotherapy induced immune response activation and complete tumor growth regressions in 80%–100% of mice. In patients with metastatic NSCLC treated with NHS-IL2 (3, 3, and 7 patients in the 0.15-mg/kg, 0.30-mg/kg, and 0.45-mg/kg cohorts, respectively), maximum tolerated dose was not reached. Most frequently reported adverse events were fatigue, anorexia, and rash. Transient increases in leukocyte subsets were observed. In 3 patients, thyroid gland dysfunction occurred. No objective responses were reported; long-term survival was observed in 2 patients, including 1 patient with long-term tumor control.ConclusionsCombining NHS-IL2 with radiotherapy achieved synergistic antitumor activity in preclinical studies, supporting the use in lung cancer patients. This combination was well tolerated and 2 of 13 patients achieved long-term survival.Trial registrationClinicalTrials.gov NCT00879866
Journal of Proteome Research | 2009
Mara Colzani; Patrice Waridel; Julien Laurent; Faes E; Curzio Rüegg; Manfredo Quadroni
Supernatants from cell cultures (also called conditioned media, CMs) are commonly analyzed to study the pool of secreted proteins (secretome). To reduce the exogenous protein background, serum-free media are often used to obtain CMs. Serum deprivation, however, can severely affect cell viability and phenotype, including protein secretion. We present a strategy to analyze the proteins secreted by cells in fetal bovine serum-containing CMs, which combines the advantage of metabolic labeling and protein concentration linearization techniques. Incubation of CMs with a hexapeptide ligand library was used to reduce the dynamic range of the samples and led to the identification of 3 times more proteins than in untreated CM samples. Labeling with a deuterated amino acid was used to distinguish between cellular proteins and homologous bovine proteins contained in the medium. Application of the strategy to two breast cancer cell lines led to the identification of proteins secreted in different amounts and which could correlate with their varying degree of aggressiveness. Selected reaction monitoring (SRM)-based quantitation of three proteins of interest in the crude samples yielded data in good agreement with the results from concentration-equalized samples.
European Journal of Cancer | 2013
Silke Gillessen; Ulrike Gnad-Vogt; E. Gallerani; Joachim Beck; Cristiana Sessa; Aurelius Omlin; Maria R. Mattiacci; Bernd Liedert; Daniel Kramer; Julien Laurent; Daniel E. Speiser; Roger Stupp
BACKGROUND EMD 521873 (Selectikine), an immunocytokine comprising a DNA-targeting antibody, aimed at tumour necrosis, fused with a genetically modified interleukin-2 (IL-2) moiety, was investigated in this first-in-human phase I study. METHODS Patients had metastatic or locally advanced solid tumours failing previous standard therapy. Selectikine was administered as a 1-hour intravenous infusion on 3 consecutive days, every 3 weeks. A subgroup of patients also received 300 mg/m(2) cyclophosphamide on day 1 of each cycle. Escalating doses of Selectikine were investigated with the primary objective of determining the maximum tolerated dose (MTD). RESULTS Thirty-nine patients were treated with Selectikine alone at dose levels from 0.075 to 0.9 mg/kg, and nine were treated at doses of 0.45 and 0.6 mg/kg in combination with cyclophosphamide. A dose-dependent linear increase of peak serum concentrations and area under curve was found. The dose-limiting toxicity was grade 3 skin rash at the 0.9 mg/kg dose-level; the MTD was 0.6 mg/kg. Rash and flu-like symptoms were the most frequent side-effects. No severe cardiovascular side-effects (hypotension or vascular leak) were observed. At all dose-levels, transient increases in total lymphocyte, eosinophil and monocyte counts were recorded. No objective tumour responses, but long periods of disease stabilisation were observed. Transient and non-neutralising Selectikine antibodies were detected in 69% of patients. CONCLUSIONS The MTD of Selectikine with or without cyclophosphamide administered under this schedule was 0.6 mg/kg. The recommended phase II dose was 0.45-0.6 mg/kg. Selectikine had a favourable safety profile and induced biological effects typical for IL-2.
Cancer Research | 2011
Julien Laurent; Eveline Faes-van't Hull; Cedric Touvrey; François Kuonen; Qiang Lan; Girieca Lorusso; Marie‑Agnès Doucey; Laura Ciarloni; Natsuko Imaizumi; Gian Carlo Alghisi; Ernesta Fagiani; Khalil Zaman; Roger Stupp; Jean François Delaloye; Gerhard Christofori; Curzio Rüegg
Tumor-mobilized bone marrow-derived CD11b(+) myeloid cells promote tumor angiogenesis, but how and when these cells acquire proangiogenic properties is not fully elucidated. Here, we show that CD11b(+) myelomonocytic cells develop proangiogenic properties during their differentiation from CD34(+) hematopoietic progenitors and that placenta growth factor (PlGF) is critical in promoting this education. Cultures of human CD34(+) progenitors supplemented with conditioned medium from breast cancer cell lines or PlGF, but not from nontumorigenic breast epithelial lines, generate CD11b(+) cells capable of inducing endothelial cell sprouting in vitro and angiogenesis in vivo. An anti-Flt-1 mAb or soluble Flt-1 abolished the generation of proangiogenic activity during differentiation from progenitor cells. Moreover, inhibition of metalloproteinase activity, but not VEGF, during the endothelial sprouting assay blocked sprouting induced by these proangiogenic CD11b(+) myelomonocytes. In a mouse model of breast cancer, circulating CD11b(+) cells were proangiogenic in the sprouting assays. Silencing of PlGF in tumor cells prevented the generation of proangiogenic activity in circulating CD11b(+) cells, inhibited tumor blood flow, and slowed tumor growth. Peripheral blood of breast cancer patients at diagnosis, but not of healthy individuals, contained elevated levels of PlGF and circulating proangiogenic CD11b(+) myelomonocytes. Taken together, our results show that cancer cells can program proangiogenic activity in CD11b(+) myelomonocytes during differentiation of their progenitor cells in a PlGF-dependent manner. These findings impact breast cancer biology, detection, and treatment.
Journal of Translational Medicine | 2014
Emanuela Romano; Olivier Michielin; Verena Voelter; Julien Laurent; Helene Bichat; Athina Stravodimou; Pedro Romero; Daniel E. Speiser; Frédéric Triebel; Serge Leyvraz; Alexandre Harari
BackgroundImmunotherapy offers a promising novel approach for the treatment of cancer and both adoptive T-cell transfer and immune modulation lead to regression of advanced melanoma. However, the potential synergy between these two strategies remains unclear.MethodsWe investigated in 12 patients with advanced stage IV melanoma the effect of multiple MART-1 analog peptide vaccinations with (n = 6) or without (n = 6) IMP321 (LAG-3Ig fusion protein) as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs at day (D) 0 (Trial registration No: NCT00324623). All patients were selected on the basis of ex vivo detectable MART-1-specific CD8 T-cell responses and immunized at D0, 8, 15, 22, 28, 52, and 74 post-reinfusion.ResultsAfter immunization, a significant expansion of MART-1-specific CD8 T cells was measured in 83% (n = 5/6) and 17% (n = 1/6) of patients from the IMP321 and control groups, respectively (P < 0.02). Compared to the control group, the mean fold increase of MART-1-specific CD8 T cells in the IMP321 group was respectively >2-, >4- and >6-fold higher at D15, D30 and D60 (P < 0.02). Long-lasting MART-1-specific CD8 T-cell responses were significantly associated with IMP321 (P < 0.02). At the peak of the response, MART-1-specific CD8 T cells contained higher proportions of effector (CCR7− CD45RA+/−) cells in the IMP321 group (P < 0.02) and showed no sign of exhaustion (i.e. were mostly PD1−CD160−TIM3−LAG3−2B4+/−). Moreover, IMP321 was associated with a significantly reduced expansion of regulatory T cells (P < 0.04); consistently, we observed a negative correlation between the relative expansion of MART-1-specific CD8 T cells and of regulatory T cells. Finally, although there were no confirmed responses as per RECIST criteria, a transient, 30-day partial response was observed in a patient from the IMP321 group.ConclusionsVaccination with IMP321 as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs induced more robust and durable cellular antitumor immune responses, supporting further development of IMP321 as an adjuvant for future immunotherapeutic strategies.
Journal of Translational Medicine | 2013
Julien Laurent; Cédric Touvrey; Silke Gillessen; Magali Joffraud; Manuela Vicari; Caroline Bertrand; Stefano Ongarello; Bernd Liedert; E. Gallerani; Joachim Beck; Aurelius Omlin; Cristiana Sessa; Sonia Quaratino; Roger Stupp; Ulrike Gnad-Vogt; Daniel E. Speiser
BackgroundEMD 521873 (Selectikine or NHS-IL2LT) is a fusion protein consisting of modified human IL-2 which binds specifically to the high-affinity IL-2 receptor, and an antibody specific for both single- and double-stranded DNA, designed to facilitate the enrichment of IL-2 in tumor tissue.MethodsAn extensive analysis of pharmacodynamic (PD) markers associated with target modulation was assessed during a first-in-human phase I dose-escalation trial of Selectikine.ResultsThirty-nine patients with metastatic or locally advanced tumors refractory to standard treatments were treated with increasing doses of Selectikine, and nine further patients received additional cyclophosphamide. PD analysis, assessed during the first two treatment cycles, revealed strong activation of both CD4+ and CD8+ T-cells and only weak NK cell activation. No dose response was observed. As expected, Treg cells responded actively to Selectikine but remained at lower frequency than effector CD4+ T-cells. Interestingly, patient survival correlated positively with both high lymphocyte counts and low levels of activated CD8+ T-cells at baseline, the latter of which was associated with enhanced T-cell responses to the treatment.ConclusionsThe results confirm the selectivity of Selectikine with predominant T-cell and low NK cell activation, supporting follow-up studies assessing the clinical efficacy of Selectikine for cancer patients.
The International Journal of Developmental Biology | 2011
Julien Laurent; Cedric Touvrey; Francesca Botta; François Kuonen; Curzio Rüegg
Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.
Journal of Immunotherapy | 2010
Julien Laurent; Daniel E. Speiser; Victor Appay; Cédric Touvrey; Manuela Vicari; Anne Papaioannou; Giorgia Canellini; Donata Rimoldi; Nathalie Rufer; Pedro Romero; Serge Leyvraz; Verena Voelter
Recent immunotherapy trials have shown that lymphodepletion induced by short-term chemotherapy favors subsequent expansion of adoptively transferred T cells, by homeostatic mechanisms. To take advantage of this effect, novel regimens are being developed with the aim to enhance tumor immunity and reduce treatment toxicity. We have designed a clinical phase I trial combining chemotherapy, reinfusion of PBMC containing Melan-AMART−1-specific T cells, and vaccination with Melan-A peptide in Incomplete Freunds Adjuvant. Treatment with Busulfan plus Fludarabine depleted lymphocytes only weakly. Cyclophosphamide (CTX) plus Fludarabine depleted lymphocytes more profoundly, with a maximal effect using high doses of CTX. It is interesting to note that, the degree of homeostatic T-cell proliferation correlated tightly with the extent of lymphodepletion. As compared with CD4 T cells, CD8 T cells showed higher susceptibility to chemotherapy, followed by more rapid homeostatic proliferation and recovery, resulting in strong inversions of CD4/CD8 ratios. Despite efficient homeostatic proliferation of total CD4 and CD8 T cells, the frequency of CD8 T cells specific for Melan-A and cancer-testis antigens remained relatively low. In contrast, EBV-specific T cells expanded and reached high numbers. We conclude that short-term chemotherapy promoted homeostatic lymphocyte proliferation depending on the intensity of lymphocyte depletion, however without preferential expansion of tumor antigen-specific T cells.
PLOS Computational Biology | 2015
Nicolas Guex; Isaac Crespo; Sylvian Bron; Assia Ifticene-Treboux; Eveline Faes-van't Hull; Solange Kharoubi; Robin Liechti; Patricia Werffeli; Mark Ibberson; François Majo; Michael Nicolas; Julien Laurent; Abhishek Garg; Khalil Zaman; Hans-Anton Lehr; Brian J. Stevenson; Curzio Rüegg; George Coukos; Jean-François Delaloye; Ioannis Xenarios; Marie-Agnès Doucey
Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.
Cytometry Part A | 2010
François Kuonen; Cedric Touvrey; Julien Laurent; Curzio Rüegg
It is well established that cancer cells can recruit CD11b+ myeloid cells to promote tumor angiogenesis and tumor growth. Increasing interest has emerged on the identification of subpopulations of tumor‐infiltrating CD11b+ myeloid cells using flow cytometry techniques. In the literature, however, discrepancies exist on the phenotype of these cells (Coffelt et al., Am J Pathol 2010;176:1564–1576). Since flow cytometry analysis requires particular precautions for accurate sample preparation and trustable data acquisition, analysis, and interpretation, some discrepancies might be due to technical reasons rather than biological grounds. We used the syngenic orthotopic 4T1 mammary tumor model in immunocompetent BALB/c mice to analyze and compare the phenotype of CD11b+ myeloid cells isolated from peripheral blood and from tumors, using six‐color flow cytometry. We report here that the nonspecific antibody binding through Fc receptors, the presence of dead cells and cell doublets in tumor‐derived samples concur to generate artifacts in the phenotype of tumor‐infiltrating CD11b+ subpopulations. We show that the heterogeneity of tumor‐infiltrating CD11b+ subpopulations analyzed without particular precautions was greatly reduced upon Fc block treatment, dead cells, and cell doublets exclusion. Phenotyping of tumor‐infiltrating CD11b+ cells was particularly sensitive to these parameters compared to circulating CD11b+ cells. Taken together, our results identify Fc block treatment, dead cells, and cell doublets exclusion as simple but crucial steps for the proper analysis of tumor‐infiltrating CD11b+ cell populations.