Julien Mandon
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Mandon.
Aob Plants | 2013
Luis A. J. Mur; Julien Mandon; Stefan Persijn; Simona M. Cristescu; I. E. Moshkov; G. V. Novikova; Michael A. Hall; Frans J. M. Harren; Kim H. Hebelstrup; Kapuganti Jagadis Gupta
BACKGROUND AND AIMS After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. SCOPE AND CONCLUSIONS The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP-as in animal systems-require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.
Plant Science | 2011
Luis A. J. Mur; Julien Mandon; Simona M. Cristescu; Frans J. M. Harren; Elena Prats
Over the last decade nitric oxide (NO) has been shown to influence a range of processes in plants. However, when, where and even if NO production occurs is controversial in several physiological scenarios in plants. This arises from a series of causes: (a) doubts have arisen over the specificity of widely used 4,5-diaminofluorescein diacetate (DAF-2DA)/4-amino-5-methylamino-2,7-difluorofluorescein (DAF-FM) dyes for NO, (b) no plant nitric oxide synthase (NOS) has been cloned, so that the validity of using mammalian NOS inhibitors to demonstrate that NO is being measured is debatable, (c) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO) needs to be used with caution, and (d) some discrepancies between assays for in planta measurements and another based on sampling NO from the gas phase have been reported. This review will outline some commonly used methods to determine NO, attempt to reconcile differing results obtained by different laboratories and suggest appropriate approaches to unequivocally demonstrate the production of NO.
Journal of Experimental Botany | 2012
Luis A. J. Mur; Anushen Sivakumaran; Julien Mandon; Simona M. Cristescu; Frans J. M. Harren; Kim H. Hebelstrup
Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens.
Annals of Botany | 2013
Simona M. Cristescu; Julien Mandon; Denis D. Arslanov; Jérôme De Pessemier; Christian Hermans; Frans J. M. Harren
BACKGROUND In view of ethylenes critical developmental and physiological roles the gaseous hormone remains an active research topic for plant biologists. Progress has been made to understand the ethylene biosynthesis pathway and the mechanisms of perception and action. Still numerous questions need to be answered and findings to be validated. Monitoring gas production will very often complete the picture of any ethylene research topic. Therefore the search for suitable ethylene measuring methods for various plant samples either in the field, greenhouses, laboratories or storage facilities is strongly motivated. SCOPE This review presents an update of the current methods for ethylene monitoring in plants. It focuses on the three most-used methods - gas chromatography detection, electrochemical sensing and optical detection - and compares them in terms of sensitivity, selectivity, time response and price. Guidelines are provided for proper selection and application of the described sensor methodologies and some specific applications are illustrated of laser-based detector for monitoring ethylene given off by Arabidopsis thaliana upon various nutritional treatments. CONCLUSIONS Each method has its advantages and limitations. The choice for the suitable ethylene sensor needs careful consideration and is driven by the requirements for a specific application.
Journal of Experimental Botany | 2012
Kim H. Hebelstrup; Martijn van Zanten; Julien Mandon; Laurentius A. C. J. Voesenek; Frans J. M. Harren; Simona M. Cristescu; Ian M. Møller; Luis A. J. Mur
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O2), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Journal of Biomedical Optics | 2012
Julien Mandon; Marieann Högman; Peter Merkus; Jan van Amsterdam; Frans J. M. Harren; Simona M. Cristescu
Fractional exhaled nitric oxide (F(E)NO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring F(E)NO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 110(-9)) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO, Aerocrine AB, Sweden). F(E)NO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.
Optics Letters | 2014
Yuwei Jin; Simona M. Cristescu; Frans J. M. Harren; Julien Mandon
We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250 cm(-1) within 70 μs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000 cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.
Physiologia Plantarum | 2014
Kim H. Hebelstrup; Jay K. Shah; Catherine Simpson; Jan K. Schjoerring; Julien Mandon; Simona M. Cristescu; Frans J. M. Harren; Michael W. Christiansen; Luis A. J. Mur; Abir U. Igamberdiev
Non-symbiotic hemoglobin (nsHb) genes are ubiquitous in plants, but their biological functions have mostly been studied in model plant species rather than in crops. nsHb influences cell signaling and metabolism by modulating the levels of nitric oxide (NO). Class 1 nsHb is upregulated under hypoxia and is involved in various biotic and abiotic stress responses. Ectopic overexpression of nsHb in Arabidopsis thaliana accelerates development, whilst targeted overexpression in seeds can increase seed yield. Such observations suggest that manipulating nsHb could be a valid biotechnological target. We studied the effects of overexpression of class 1 nsHb in the monocotyledonous crop plant barley (Hordeum vulgare cv. Golden Promise). nsHb was shown to be involved in NO metabolism in barley, as ectopic overexpression reduced the amount of NO released during hypoxia. Further, as in Arabidopsis, nsHb overexpression compromised basal resistance toward pathogens in barley. However, unlike Arabidopsis, nsHb ectopic overexpression delayed growth and development in barley, and seed specific overexpression reduced seed yield. Thus, nsHb overexpression in barley does not seem to be an efficient strategy for increasing yield in cereal crops. These findings highlight the necessity for using actual crop plants rather than laboratory model plants when assessing the effects of biotechnological approaches to crop improvement.
Journal of Biomedical Optics | 2013
Denis D. Arslanov; Maria P. P. Castro; Noortje A. Creemers; Anne H. Neerincx; Marius Spunei; Julien Mandon; Simona M. Cristescu; Peter Merkus; Frans J. M. Harren
Abstract. A versatile, continuous wave, optical parametric oscillator is used in combination with photoacoustic spectroscopy for long-term trace gas experiments of volatile compounds emitted by biological samples. The optical parametric oscillator-based spectrometer (wavelength near 3 μm, 8-MHz linewidth, output power ∼1 W) is successfully tested for the detection of hydrogen cyanide (HCN) emission from clover leaves, and Pseudomonas bacteria; in addition, the presence of HCN in exhaled human breath is measured. For specific experiments, the spectrometer is operated continuously up to 10 days and has a detection limit of 0.4 parts-per-billion volume of HCN in air over 10 s, using the P8 rotational line in the ν3 vibrational band of HCN at 3287.25 cm−1. This results in an overall sensitivity of the system of 2.5×10−9 cm−1 Hz−1/2.
Obesity | 2014
Devasena Samudrala; Gerwen Lammers; Julien Mandon; Lionel Blanchet; Tim H. A. Schreuder; Maria T. E. Hopman; Frans J. M. Harren; Luc Tappy; Simona M. Cristescu
To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions.