Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Muffat is active.

Publication


Featured researches published by Julien Muffat.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs

Jacob Hanna; Albert W. Cheng; Krishanu Saha; Jongpil Kim; Christopher J. Lengner; Frank Soldner; John P. Cassady; Julien Muffat; Bryce W. Carey; Rudolf Jaenisch

Human and mouse embryonic stem cells (ESCs) are derived from blastocyst-stage embryos but have very different biological properties, and molecular analyses suggest that the pluripotent state of human ESCs isolated so far corresponds to that of mouse-derived epiblast stem cells (EpiSCs). Here we rewire the identity of conventional human ESCs into a more immature state that extensively shares defining features with pluripotent mouse ESCs. This was achieved by ectopic induction of Oct4, Klf4, and Klf2 factors combined with LIF and inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase (ERK1/2) pathway. Forskolin, a protein kinase A pathway agonist which can induce Klf4 and Klf2 expression, transiently substitutes for the requirement for ectopic transgene expression. In contrast to conventional human ESCs, these epigenetically converted cells have growth properties, an X-chromosome activation state (XaXa), a gene expression profile, and a signaling pathway dependence that are highly similar to those of mouse ESCs. Finally, the same growth conditions allow the derivation of human induced pluripotent stem (iPS) cells with similar properties as mouse iPS cells. The generation of validated “naïve” human ESCs will allow the molecular dissection of a previously undefined pluripotent state in humans and may open up new opportunities for patient-specific, disease-relevant research.


Cell | 2010

Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations

Christopher J. Lengner; Alexander A. Gimelbrant; Jennifer A. Erwin; Albert W. Cheng; Matthew G. Guenther; G. Grant Welstead; Raaji K. Alagappan; Garrett M. Frampton; Ping Xu; Julien Muffat; Sandro Santagata; Doug Powers; C. Brent Barrett; Richard A. Young; Jeannie T. Lee; Rudolf Jaenisch; Maisam Mitalipova

The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.


Science | 2013

Identification and Rescue of α-Synuclein Toxicity in Parkinson Patient-Derived Neurons

Chee Yeun Chung; Vikram Khurana; Pavan K. Auluck; Daniel F. Tardiff; Joseph R. Mazzulli; Frank Soldner; Valeriya Baru; Yali Lou; Yelena Freyzon; Sukhee Cho; Alison E. Mungenast; Julien Muffat; Maisam Mitalipova; Michael D. Pluth; Nathan T. Jui; Birgitt Schüle; Stephen J. Lippard; Li-Huei Tsai; Dimitri Krainc; Stephen L. Buchwald; Rudolf Jaenisch; Susan Lindquist

From Yeast to Therapeutic? Yeast has shown some promise as a model system to generate lead compounds that could have therapeutic potential for the cellular problems associated with neurodegenerative diseases. Along these lines, Tardiff et al. (p. 979, published online 24 October) and Chung et al. (p. 983, published online 24 October) describe the results of multiple screens in yeast that lead to the identification of a potential therapeutic compound to combat the cytotoxic affect of α-synuclein accumulation. The compound was able to reverse the pathological hallmarks of Parkinsons disease in cultured neurons derived from patients with α-synuclein–induced Parkinsons disease dementia. Screening in yeast yields an effective therapeutic for Parkinson’s patient–derived neuronal stem cells. The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to α-synuclein (αsyn), a key protein involved in Parkinson’s disease (PD). We generated cortical neurons from iPS cells of patients harboring αsyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of αsyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)–associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions

Krishanu Saha; Ying Mei; Colin M. Reisterer; Neena Pyzocha; Jing Yang; Julien Muffat; Martyn C. Davies; Morgan R. Alexander; Robert Langer; Daniel G. Anderson; Rudolf Jaenisch

The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.


Nature Medicine | 2016

Efficient derivation of microglia-like cells from human pluripotent stem cells

Julien Muffat; Yun Li; Bingbing Yuan; Maisam Mitalipova; Attya Omer; Sean R. Corcoran; Grisilda Bakiasi; Li-Huei Tsai; Patrick Aubourg; Richard M. Ransohoff; Rudolf Jaenisch

Microglia, the only lifelong resident immune cells of the central nervous system (CNS), are highly specialized macrophages that have been recognized to have a crucial role in neurodegenerative diseases such as Alzheimers, Parkinsons and adrenoleukodystrophy (ALD). However, in contrast to other cell types of the human CNS, bona fide microglia have not yet been derived from cultured human pluripotent stem cells. Here we establish a robust and efficient protocol for the rapid production of microglia-like cells from human (h) embryonic stem (ES) and induced pluripotent stem (iPS) cells that uses defined serum-free culture conditions. These in vitro pluripotent stem cell–derived microglia-like cells (termed pMGLs) faithfully recapitulate the expected ontogeny and characteristics of their in vivo counterparts, and they resemble primary fetal human and mouse microglia. We generated these cells from multiple disease-specific cell lines and find that pMGLs derived from an hES model of Rett syndrome are smaller than their isogenic controls. We further describe a platform to study the integration and live behavior of pMGLs in organotypic 3D cultures. This modular differentiation system allows for the study of microglia in highly defined conditions as they mature in response to developmentally relevant cues, and it provides a framework in which to study the long-term interactions of microglia residing in a tissue-like environment.


Current Biology | 2006

Overexpression of a Drosophila Homolog of Apolipoprotein D Leads to Increased Stress Resistance and Extended Lifespan

David W. Walker; Julien Muffat; Colin Rundel; Seymour Benzer

Increased Apolipoprotein D (ApoD) expression has been reported in various neurological disorders, including Alzheimers disease, schizophrenia, and stroke, and in the aging brain . However, whether ApoD is toxic or a defense is unknown. In a screen to identify genes that protect Drosophila against acute oxidative stress, we isolated a fly homolog of ApoD, Glial Lazarillo (GLaz). In independent transgenic lines, overexpression of GLaz resulted in increased resistance to hyperoxia (100% O(2)) as well as a 29% extension of lifespan under normoxia. These flies also displayed marked improvements in climbing and walking ability after sublethal exposure to hyperoxia. Overexpression of Glaz also increased resistance to starvation without altering lipid or protein content. To determine whether GLaz might be important in protection against reperfusion injury, we subjected the flies to hypoxia, followed by recovery under normoxia. Overexpression of GLaz was protective against behavioral deficits caused in normal flies by this ischemia/reperfusion paradigm. This and the accompanying paper by Sanchez et al. (in this issue of Current Biology) are the first to manipulate the levels of an ApoD homolog in a model organism. Our data suggest that human ApoD may play a protective role and thus may constitute a therapeutic target to counteract certain neurological diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial complex II mutant.

David W. Walker; Petr Hájek; Julien Muffat; Dan Knoepfle; Stephanie Cornelison; Giuseppe Attardi; Seymour Benzer

Oxidative stress is implicated as a major cause of aging and age-related diseases, such as Parkinsons and Alzheimers, as well as ischemia-reperfusion injury in stroke. The mitochondrial electron transport chain is the principal source of reactive oxygen species within cells. Despite considerable medical interest, the molecular mechanisms that regulate reactive oxygen species formation within the mitochondrion remain poorly understood. Here, we report the isolation and characterization of a Drosophila mutant with a defect in subunit b of succinate dehydrogenase (SDH; mitochondrial complex II). The sdhB mutant is hypersensitive to oxygen and displays hallmarks of a progeroid syndrome, including early-onset mortality and age-related behavioral decay. Pathological analysis of the flight muscle, which is amongst the most highly energetic tissues in the animal kingdom, reveals structural abnormalities in the mitochondria. Biochemical analysis shows that, in the mutant, there is a complex II-specific respiratory defect and impaired complex II-mediated electron transport, although the other respiratory complexes remain functionally intact. The complex II defect is associated with an increased level of mitochondrial hydrogen peroxide production, suggesting a possible mechanism for the observed sensitivity to elevated oxygen concentration and the decreased lifespan of the mutant fly.


PLOS Genetics | 2009

Control of Metabolic Homeostasis by Stress Signaling Is Mediated by the Lipocalin NLaz

Julie Hull-Thompson; Julien Muffat; Diego Sanchez; David Walker; Seymour Benzer; Maria D. Ganfornina; Heinrich Jasper

Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS) activity. Stress and inflammatory signaling pathways—such as Jun-N-terminal Kinase (JNK) signaling—repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz), a homologue of vertebrate Apolipoprotein D (ApoD) and Retinol Binding Protein 4 (RBP4). Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan—phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila

Julien Muffat; David W. Walker; Seymour Benzer

Apolipoprotein D (ApoD) expression increases in several neurological disorders and in spinal cord injury. We provide a report of a physiological role for human ApoD (hApoD): Flies overexpressing hApoD are long-lived and protected against stress conditions associated with aging and neurodegeneration, including hyperoxia, dietary paraquat, and heat stress. We show that the fly ortholog, Glial Lazarillo, is strongly up-regulated in response to these extrinsic stresses and also can protect in vitro-cultured cells in situations modeling Alzheimers disease (AD) and Parkinsons disease (PD). In adult flies, hApoD overexpression reduces age-associated lipid peroxide accumulation, suggesting a proximal mechanism of action. Similar data obtained in the mouse [Ganfornina, M.D., et al., (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 10.1111/j.1474-9726.2008.00395.] as well as in plants (Charron et al., personal communication) suggest that ApoD and its orthologs play an evolutionarily conserved role in response to stress, possibly managing or preventing lipid peroxidation.


Cell Cycle | 2010

Apolipoprotein D: An overview of its role in aging and age-related diseases

Julien Muffat; David Walker

“It’s got to be doing something important!”-Seymour Benzer, reflecting on the observation that ApoD mRNA levels increase 500-fold following neuronal crush injury. Seymour Benzer’s curiosity was legendary and seemingly limitless. Towards the end of his life, one of the (many) questions that kept him awake at night concerned the emerging role of Apolipoprotein D (ApoD) in aging and neurological disease. In this perspective, we will discuss the clinical and biochemical data on ApoD, and the input from the recent genetic studies in model systems, including those from the Benzer lab.

Collaboration


Dive into the Julien Muffat's collaboration.

Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yun Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Maisam Mitalipova

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Albert W. Cheng

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Attya Omer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Soldner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Seymour Benzer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge