Julien Renaud
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Renaud.
PLOS Biology | 2013
David Mouillot; David R. Bellwood; Christopher Baraloto; Jérôme Chave; René Galzin; Mireille Harmelin-Vivien; Michel Kulbicki; Sébastien Lavergne; Sandra Lavorel; Nicolas Mouquet; C. E. Timothy Paine; Julien Renaud; Wilfried Thuiller
The most unusual, and thus irreplaceable, functions performed by species in three different species-rich ecosystems are fulfilled by only the rare species in these ecosystems.
Nature Communications | 2014
Wilfried Thuiller; Samuel Pironon; Achilleas Psomas; Morgane Barbet-Massin; Frédéric Jiguet; Sébastien Lavergne; Julien Renaud; Laure Zupan; Niklaus E. Zimmermann
Despite the recognized joint impact of climate and land cover change on facets of biodiversity and their associated functions, risk assessments have primarily evaluated impacts on species ranges and richness. Here we quantify the sensitivity of the functional structure of European avian assemblages to changes in both regional climate and land cover. We combine species range forecasts with functional-trait information. We show that species sensitivity to environmental change is randomly distributed across the functional tree of the European avifauna and that functionally unique species are not disproportionately threatened by 2080. However, projected species range changes will modify the mean species richness and functional diversity of bird diets and feeding behaviours. This will unequally affect the spatial structure of functional diversity, leading to homogenization across Europe. Therefore, global changes may alter the functional structure of species assemblages in the future in ways that need to be accounted for in conservation planning.
Alpine Botany | 2014
Serge Aubert; Florian C. Boucher; Sébastien Lavergne; Julien Renaud; Philippe Choler
Cushion plants have long fascinated botanists for their ability to cope with extreme environments in most mountains and arctic regions of the world. One century ago, a first worldwide catalogue of species forming cushions was published by Hauri and Schröter (Bot Jahrb Syst Pflanzengesch Pflanzengeogr 50:618–656, 1914). Here, we defined a simplified typology of cushion plants and updated the worldwide catalogue of cushion species, along with information on their geographic distribution. This compilation was based on available information in floras and catalogues but also in efloras and virtual encyclopedias, which were screened using automated database queries. We established a list of 1,309 cushion-forming species distributed in 272 genera and 63 families of angiosperms. Compact cushions are represented by 678 species, among which 587 species exhibit a hemispherical shape, and 91 species exhibit a flat to mat shape. We found 398 species forming non-compact hemispherical cushions. The list of cushion species has significantly increased since Hauri and Shröter, due to the description of new species, updated regional inventories, and improved access to electronic databases. Uncertainties in the delineation of the cushion life form are discussed, notably for non-compact growth forms. A website has been launched to display the catalogue and enable a collaborative improvement of the database (http://www.cushionplants.eu/). The distribution of the species is presented on the basis of the world geographical scheme for recording plant distributions and global biodiversity information facility data. This catalogue will serve as a reference database for further analyses on the biogeography and evolutionary history of cushion plants and arctico-alpine biotas.
Biological Invasions | 2015
Laure Gallien; Florent Mazel; Sébastien Lavergne; Julien Renaud; Rolland Douzet; Wilfried Thuiller
Despite considerable efforts devoted to investigate the community assembly processes driving plant invasions, few general conclusions have been drawn so far. Three main processes, generally acting as successive filters, are thought to be of prime importance. The invader has to disperse (1st filter) into a suitable environment (2nd filter) and succeed in establishing in recipient communities through competitive interactions (3rd filter) using two strategies: competition avoidance by the use of different resources (resource opportunity), or competitive exclusion of native species. Surprisingly, despite the general consensus on the importance of investigating these three processes and their interplay, they are usually studied independently. Here we aim to analyse these three filters together, by including them all: abiotic environment, dispersal and biotic interactions, into models of invasive species distributions. We first propose a suite of indices (based on species functional dissimilarities) supposed to reflect the two competitive strategies (resource opportunity and competition exclusion). Then, we use a set of generalised linear models to explain the distribution of seven herbaceous invaders in natural communities (using a large vegetation database for the French Alps containing 5,000 community-plots). Finally, we measure the relative importance of competitive interaction indices, identify the type of coexistence mechanism involved and how this varies along environmental gradients. Adding competition indices significantly improved model’s performance, but neither resource opportunity nor competitive exclusion were common strategies among the seven species. Overall, we show that combining environmental, dispersal and biotic information to model invasions has excellent potential for improving our understanding of invader success.
BMC Genomics | 2014
Christophe Regnault; Isabelle A.M. Worms; Christine Oger-Desfeux; Christelle Melodelima; Sylvie Veyrenc; Marie-Laure Bayle; Bruno Combourieu; Aurélie Bonin; Julien Renaud; Muriel Raveton; Stéphane Reynaud
BackgroundDespite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role pollutants play in the decline of amphibian populations remains unclear. Amongst the most common aquatic contaminants, polycyclic aromatic hydrocarbons (PAHs) have been shown to induce several adverse effects on amphibian species in the larval stages. Conversely, adults exposed to high concentrations of the ubiquitous PAH, benzo[a]pyrene (BaP), tolerate the compound thanks to their highly efficient hepatic detoxification mechanisms. Due to this apparent lack of toxic effect on adults, no studies have examined in depth the potential toxicological impact of PAH on the physiology of adult amphibian livers. This study sheds light on the hepatic responses of Xenopus tropicalis when exposed to high environmentally relevant concentrations of BaP, by combining a high throughput transcriptomic approach (mRNA deep sequencing) and a characterization of cellular and physiological modifications to the amphibian liver.ResultsTranscriptomic changes observed in BaP-exposed Xenopus were further characterized using a time-dependent enrichment analysis, which revealed the pollutant-dependent gene regulation of important biochemical pathways, such as cholesterol biosynthesis, insulin signaling, adipocytokines signaling, glycolysis/gluconeogenesis and MAPK signaling. These results were substantiated at the physiological level with the detection of a pronounced metabolic disorder resulting in a possible insulin resistance-like syndrome phenotype. Hepatotoxicity induced by lipid and cholesterol metabolism impairments was clearly identified in BaP-exposed individuals.ConclusionsOur data suggested that BaP may disrupt overall liver physiology, and carbohydrate and cholesterol metabolism in particular, even after short-term exposure. These results are further discussed in terms of how this deregulation of liver physiology can lead to general metabolic impairment in amphibians chronically exposed to contaminants, thereby illustrating the role xenobiotics might play in the global decline in amphibian populations.
Annals of Botany | 2015
Bradley Z. Carlson; Philippe Choler; Julien Renaud; Jean-Pierre Dedieu; Wilfried Thuiller
BACKGROUND AND AIMS Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. METHODS Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content. KEY RESULTS Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R(2) of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics. CONCLUSIONS The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that studies seeking to predict the response of alpine plant communities to climate change need to consider shifts in both temperature and nival regimes.
Ecology | 2015
Florent Mazel; Julien Renaud; François Guilhaumon; David Mouillot; Dominique Gravel; Wilfried Thuiller
In analogy to the species-area relationship (SAR), one of the few laws in ecology, the phylogenetic diversity-area relationship (PDAR) describes the tendency of phylogenetic diversity (PD) to increase with area. Although investigating PDAR has the potential to unravel the underlying processes shaping assemblages across spatial scales and to predict PD loss through habitat reduction, it has been little investigated so far. Focusing on PD has noticeable advantages compared to species richness (SR), since PD also gives insights on processes such as speciation/extinction, assembly rules and ecosystem functioning. Here we investigate the universality and pervasiveness of the PDAR at continental scale using terrestrial mammals as study case. We define the relative robustness of PD (compared to SR) to habitat loss as the area between the standardized PDAR and standardized SAR (i.e., standardized by the diversity of the largest spatial window) divided by the area under the standardized SAR only. This metric quantifies the relative increase of PD robustness compared to SR robustness. We show that PD robustness is higher than SR robustness but that it varies among continents. We further use a null model approach to disentangle the relative effect of phylogenetic tree shape and nonrandom spatial distribution of evolutionary history on the PDAR. We find that, for most spatial scales and for all continents except Eurasia, PDARs are not different from expected by a model using only the observed SAR and the shape of the phylogenetic tree at continental scale. Interestingly, we detect a strong phylogenetic structure of the Eurasian PDAR that can be predicted by a model that specifically account for a finer biogeographical delineation of this continent. In conclusion, the relative robustness of PD to habitat loss compared to species richness is determined by the phylogenetic tree shape but also depends on the spatial structure of PD.
Journal of Biogeography | 2017
Hannah E. Marx; Cédric Dentant; Julien Renaud; Romain Delunel; David C. Tank; Sébastien Lavergne
Aim Plants occurring on high-alpine summits are generally expected to persist due to adaptations to extreme selective forces caused by the harshest climates where angiosperm life is known to thrive. We assessed the relative effects of this strong environmental filter and of other historical and stochastic factors driving plant community structure in very high-alpine conditions (up to 4,000m). Location European Alps, Écrins National Park, France. Methods Using species occurrence data collected from floristic surveys on 15 summits (2,791 m - 4,102 m a.s.l.) throughout the Écrins range, along with existing molecular sequence data obtained from GenBank, we used a mega-phylogenetic approach to evaluate the phylogenetic structure of high-alpine plant species assemblages. We used three nested species pools and two null models to address the importance of species-specific and species-neutral processes for driving coexistence. Results Compared to the entire species pool of the study region, alpine summits exhibited a strong signal of phylogenetic clustering. Restricting statistical sampling to environmentally and historically defined species pools reduced the significance of this pattern. However, we could not reject a model that explicitly incorporates neutral colonization and local extinction in shaping community structure for dominant plant orders. Between summits, phylogenetic turnover was generally lower than expected. Environmental drivers did not explain overall phylogenetic patterns, but we found significant geographic and climatic structure in phylogenetic diversity at finer taxonomic scales. Main conclusions Although we found evidence for strong phylogenetic clustering within alpine summits, we were not able to reject models of species-neutral processes to explain patterns of floristic diversity. Our results suggest that plant community structure in high-alpine regions can also be shaped by neutral processes, and not through the sole action of environmental selection as traditionally assumed for harsh and stressful environments.
International Journal of Biodiversity Science, Ecosystems Services & Management | 2017
Maud Mouchet; Carlo Rega; Rémy Lasseur; Damien Georges; Maria Luisa Paracchini; Julien Renaud; Julia Stürck; Catharina J.E. Schulp; Peter H. Verburg; Pieter Johannes Verkerk; Sandra Lavorel
ABSTRACT The European Union (EU) 2020 Biodiversity strategy aims at guaranteeing and enhancing the future supply of ecosystem services (‘ES’) in the member states. In an ex-ante assessment of plausible environmental policies, we projected the supply of 10 ES under 3 policy alternatives of land-use change (‘Nature Protection’, ‘Payment for carbon sequestration’ and ‘Payment for recreational services’) in the 27 EU member states (EU27). We assessed changes in supply of individual services across administrative units (at the NUTS-2 and EU27 levels) as well as bundles (at the EU27 level) between 2010 and 2040. Results show that the policy options only marginally affected ES bundles but several services could change substantially at the EU27 level (e.g. energy content from agricultural production and pollination). Wood supply, carbon sequestration and moderation of wind disturbance responded very differently across policy alternatives. At the NUTS-2 level, biocontrol of pests, carbon sequestration, moderation of wind disturbance and wood supply showed the most contrasted deviation from their regional supply in 2010. Finally, while payments for carbon sequestration benefited carbon sequestration as expected, specific payments for recreation services failed to promote them. Our analyses suggest that protecting nature appeared to be the best way of fostering ES supply within Europe. EDITED BY Rob Alkemade
The American Naturalist | 2017
Jeanne Tonnabel; Frank M. Schurr; Florian C. Boucher; Wilfried Thuiller; Julien Renaud; Emmanuel J. P. Douzery; Ophélie Ronce
Organisms have evolved a diversity of life-history strategies to cope with variation in their environment. Persistence as adults and/or seeds across recruitment events allows species to dampen the effects of environmental fluctuations. The evolution of life cycles with overlapping generations should thus permit the colonization of environments with uncertain recruitment. We tested this hypothesis in Leucadendron (Proteaceae), a genus with high functional diversity native to fire-prone habitats in the South African fynbos. We analyzed the joint evolution of life-history traits (adult survival and seed-bank strategies) and ecological niches (climate and fire regime), using comparative methods and accounting for various sources of uncertainty. In the fynbos, species with canopy seed banks that are unable to survive fire as adults display nonoverlapping generations. In contrast, resprouters with an underground seed bank may be less threatened by extreme climatic events and fire intervals, given their iteroparity and long-lasting seed bank. Life cycles with nonoverlapping generations indeed jointly evolved with niches with less exposure to frost but not with those with less exposure to drought. Canopy seed banks jointly evolved with niches with more predictable fire return, compared to underground seed banks. The evolution of extraordinary functional diversity among fynbos plants thus reflects, at least in part, the diversity of both climates and fire regimes in this region.