Julien Reygner
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Reygner.
Annales Henri Poincaré | 2016
Freddy Bouchet; Julien Reygner
In the small noise regime, the average transition time between metastable states of a reversible diffusion process is described at the logarithmic scale by Arrhenius’ law. The Eyring–Kramers formula classically provides a subexponential prefactor to this large deviation estimate. For irreversible diffusion processes, the equivalent of Arrhenius’ law is given by the Freidlin–Wentzell theory. In this paper, we compute the associated prefactor and thereby generalise the Eyring–Kramers formula to irreversible diffusion processes. In our formula, the role of the potential is played by Freidlin–Wentzell’s quasipotential, and a correction depending on the non-Gibbsianness of the system along the minimum action paths is highlighted. Our study assumes some properties for the vector field: (1) attractors are isolated points, (2) the dynamics restricted to basin of attraction boundaries are attracted to single points (which are saddle-points of the vector field). We moreover assume that the minimum action paths that connect attractors to adjacent saddle-points (the instantons) have generic properties that are summarised in the conclusion. At a technical level, our derivation combines an exact computation for the first-order WKB expansion around the instanton and an exact computation of the first-order match asymptotics expansion close to the saddle-point. While the results are exact once a formal expansion is assumed, the validity of these asymptotic expansions remains to be proven.
arXiv: Probability | 2013
Benjamin Jourdain; Julien Reygner
We study a quasilinear parabolic Cauchy problem with a cumulative distribution function on the real line as an initial condition. We call ‘probabilistic solution’ a weak solution which remains a cumulative distribution function at all times. We prove the uniqueness of such a solution and we deduce the existence from a propagation of chaos result on a system of scalar diffusion processes, the interactions of which only depend on their ranking. We then investigate the long time behaviour of the solution. Using a probabilistic argument and under weak assumptions, we show that the flow of the Wasserstein distance between two solutions is contractive. Under more stringent conditions ensuring the regularity of the probabilistic solutions, we finally derive an explicit formula for the time derivative of the flow and we deduce the convergence of solutions to equilibrium.
Electronic Journal of Probability | 2014
Benjamin Jourdain; Julien Reygner
In this article, we introduce and study order-based diffusion processes. They are the solutions to multidimensional stochastic differential equations with constant diffusion matrix, proportional to the identity, and drift coefficient depending only on the ordering of the coordinates of the process. These processes describe the evolution of a system of Brownian particles moving on the real line with piecewise constant drifts, and are the natural generalization of the rank-based diffusion processes introduced in stochastic portfolio theory or in the probabilistic interpretation of nonlinear evolution equations. Owing to the discontinuity of the drift coefficient, the corresponding ordinary differential equations are ill-posed. Therefore, the small noise limit of order-based diffusion processes is not covered by the classical Freidlin-Wentzell theory. The description of this limit is the purpose of this article. We first give a complete analysis of the two-particle case. Despite its apparent simplicity, the small noise limit of such a system already exhibits various behaviours. In particular, depending on the drift coefficient, the particles can either stick into a cluster, the velocity of which is determined by elementary computations, or drift away from each other at constant velocity, in a random ordering. The persistence of randomness in the small noise limit is of the very same nature as in the pioneering works by Veretennikov (Mat. Zametki, 1983) and Bafico and Baldi (Stochastics, 1981) concerning the so-called Peano phenomenon. In the case of rank-based processes, we use a simple convexity argument to prove that the small noise limit is described by the sticky particle dynamics introduced by Brenier and Grenier (SIAM J. Numer. Anal., 1998), where particles travel at constant velocity between collisions, at which they stick together. In the general case of order-based processes, we give a sufficient condition on the drift for all the particles to aggregate into a single cluster, and compute the velocity of this cluster. Our argument consists in turning the study of the small noise limit into the study of the long time behaviour of a suitably rescaled process, and then exhibiting a Lyapunov functional for this rescaled process.
Journal of Hyperbolic Differential Equations | 2016
Benjamin Jourdain; Julien Reygner
This article is dedicated to the study of diagonal hyperbolic systems in one space dimension, with cumulative distribution functions, or more generally nonconstant monotonic bounded functions, as initial data. Under a uniform strict hyperbolicity assumption on the characteristic fields, we construct a multitype version of the sticky particle dynamics and obtain existence of global weak solutions by compactness. We then derive a
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2011
Alexandre Gaudilliere; Julien Reygner
L^p
Annals of Applied Probability | 2018
Julien Reygner
stability estimate on the particle system uniform in the number of particles. This allows to construct nonlinear semigroups solving the system in the sense of Bianchini and Bressan [Ann. of Math. (2), 2005]. We also obtain that these semigroup solutions satisfy a stability estimate in Wasserstein distances of all orders, which encompasses the classical
Annals of Finance | 2015
Benjamin Jourdain; Julien Reygner
L^1
Electronic Communications in Probability | 2015
Julien Reygner
estimate and generalises to diagonal systems the results by Bolley, Brenier and Loeper [J. Hyperbolic Differ. Equ., 2005] in the scalar case. Our results are obtained without any smallness assumption on the variation of the data, and only require the characteristic fields to be Lipschitz continuous and the system to be uniformly strictly hyperbolic.
Esaim: Proceedings | 2015
Florian Bouguet; Florent Malrieu; Fabien Panloup; Christophe Poquet; Julien Reygner
Through a Metropolis-like algorithm with single step computational cost of order one, we build a Markov chain that relaxes to the canonical Fermi statistics for k non-interacting particles among m energy levels. Uniformly over the temperature as well as the energy values and degeneracies of the energy levels we give an explicit upper bound with leading term km(ln k) for the mixing time of the dynamics. We obtain such construction and upper bound as a special case of a general result on (non-homogeneous) products of ultra log-concave measures (like binomial or Poisson laws) with a global constraint. As a consequence of this general result we also obtain a disorder-independent upper bound on the mixing time of a simple exclusion process on the complete graph with site disorder. This general result is based on an elementary coupling argument and extended to (non-homogeneous) products of log-concave measures.
A Quarterly Journal of Operations Research | 2011
Olivier Durand de Gévigney; Frédéric Meunier; Christian Popa; Julien Reygner; Ayrin Romero
We consider particle systems with mean-field interactions whose distribution is invariant by translations. Under the assumption that the system seen from its centre of mass be reversible with respect to a Gibbs measure, we establish large deviation principles for its empirical measure at equilibrium. Our study covers the cases of McKean-Vlasov particle systems without external potential, and systems of rank-based interacting diffusions. Depending on the strength of the interaction, the large deviation principles are stated in the space of centered probability measures endowed with the Wasserstein topology of appropriate order, or in the orbit space of the action of translations on probability measures. An application to the study of atypical capital distribution is detailed.