Julien Sohier
Eindhoven University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Sohier.
Annals of Probability | 2014
Rémi Rhodes; Julien Sohier; Vincent Vargas
In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with infinitely divisible weights. Mandelbrot introduced this equation to characterize the law of multiplicative cascades. We show existence and uniqueness of measures satisfying the aforementioned continuous equation. We obtain an explicit characterization of the structure of these measures, which reflects the constraints imposed by the continuous setting. In particular, we show that the continuous equation enjoys some specific properties that do not appear in the discrete star equation. To that purpose, we define a Levy multiplicative chaos that generalizes the already existing constructions. Keywords: Random measure, star equation, scale invariance, multiplicative chaos, uniqueness, infinitely divisible processes, multifractal processes.
Journal of Statistical Physics | 2015
Enm Emilio Cirillo; Fr Francesca Nardi; Julien Sohier
Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2013
Julien Sohier
Dans cet article, nous considerons des processus de renouvellement markovien a queues lourdes. Nous montrons que, convenablement renormalises, ils convergent vers l’ensemble regeneratif d’indice α. Nous appliquons ces resultats a un modele d’accrochage dans une bande. Dans ce modele, une marche aleatoire S, contrainte a rester au-dessus d’un mur, est recompensee ou penalisee lorsqu’est atteinte la bande [0,∞)×[0,a] ou a est un reel strictement positif. La convergence que nous etablissons permet de caracteriser les limites d’echelle de ce modele au point critique.
arXiv: Probability | 2009
Julien Sohier
arXiv: Probability | 2010
Julien Sohier
Archive | 2012
Rémi Rhodes; Julien Sohier; Vincent Vargas
Archive | 2012
Rémi Rhodes; Julien Sohier; Vincent Vargas
arXiv: Probability | 2014
Enm Emilio Cirillo; Fr Francesca Nardi; Julien Sohier
Annales de la faculté des sciences de Toulouse Mathématiques | 2017
Pietro Caputo; Julien Sohier
arXiv: Probability | 2014
Julien Sohier