Julien Vermot
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Vermot.
PLOS Biology | 2009
Julien Vermot; Arian S. Forouhar; Michael Liebling; David Wu; Diane Plummer; Morteza Gharib; Scott E. Fraser
The directionality of local blood flow in the zebrafish embryonic heart is essential for proper heart valve formation.
Development | 2003
Karen Niederreither; Julien Vermot; Isabelle Le Roux; Brigitte Schuhbaur; Pierre Chambon; Pascal Dollé
Targeted inactivation of the mouse retinaldehyde dehydrogenase 2 (RALDH2/ALDH1a2), the enzyme responsible for early embryonic retinoic acid synthesis, is embryonic lethal because of defects in early heart morphogenesis. Transient maternal RA supplementation from E7.5 to (at least) E8.5 rescues most of these defects, but the supplemented Raldh2–/– mutants die prenatally, from a lack of septation of the heart outflow tract (Niederreither, K., Vermot, J., Messaddeq, N., Schuhbaur, B., Chambon, P. and Dollé, P. (2001). Development 128, 1019-1031). We have investigated the developmental basis for this defect, and found that the RA-supplemented Raldh2–/– embryos exhibit impaired development of their posterior (3rd-6th) branchial arch region. While the development of the first and second arches and their derivatives, as well as the formation of the first branchial pouch, appear to proceed normally, more posterior pharyngeal pouches fail to form and the pharyngeal endoderm develops a rudimentary, pouch-like structure. All derivatives of the posterior branchial arches are affected. These include the aortic arches, pouch-derived organs (thymus, parathyroid gland) and post-otic neural crest cells, which fail to establish segmental migratory pathways and are misrouted caudally. Patterning and axonal outgrowth of the posterior (9th-12th) cranial nerves is also altered. Vagal crest deficiency in Raldh2–/– mutants leads to agenesis of the enteric ganglia, a condition reminiscent of human Hirschprungs disease. In addition, we provide evidence that: (i) wildtype Raldh2 expression is restricted to the posteriormost pharyngeal mesoderm; (ii) endogenous RA response occurs in both the pharyngeal endoderm and mesoderm, and extends more rostrally than Raldh2 expression up to the 2nd arch; (iii) RA target genes (Hoxa1, Hoxb1) are downregulated in both the pharyngeal endoderm and mesoderm of mutant embryos. Thus, RALDH2 plays a crucial role in producing RA required for pharyngeal development, and RA is one of the diffusible mesodermal signals that pattern the pharyngeal endoderm.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Julien Vermot; Karen Niederreither; Jean-Marie Garnier; Pierre Chambon; Pascal Dollé
Retinoic acid (RA), the active derivative of vitamin A, is involved in various developmental and homeostatic processes. To define whether certain developmental events are particularly sensitive to a decrease in embryonic RA levels, we generated mice bearing a hypomorphic allele of the RA-synthesizing enzyme Raldh2. The resulting mutant mice, which die perinatally, exhibit the features of the human DiGeorge syndrome (DGS) with heart outflow tract septation defects and anomalies of the aortic arch-derived head and neck arteries, laryngeal-tracheal cartilage defects, and thymus/parathyroid aplasia or hypoplasia. Analysis of Raldh2 hypomorph embryos reveal selective defects of the posterior (third to sixth) branchial arches, including absence or hypoplasia of the corresponding aortic arches and pharyngeal pouches, and local down-regulation of RA-target genes. Thus, a decreased level of embryonic RA (through genetic and/or nutritional causes) could represent a major modifier of the expressivity of human 22q11del-associated DiGeorge/velocardiofacial syndromes and, if severe enough, could on its own lead to the clinical features of the DiGeorge syndrome.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Karen Niederreither; Julien Vermot; Valérie Fraulob; Pierre Chambon; Pascal Dollé
Knockout of the murine retinoic acid (RA)-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2) gene leads to early morphogenetic defects and embryonic lethality. Using a RA-responsive reporter transgene, we have looked for RA-generating activities in Raldh2-null mouse embryos and investigated whether these activities could be ascribed to the other known RALDH enzymes (RALDH1 and RALDH3). To this end, the early defects of Raldh2−/− embryos were rescued through maternal dietary RA supplementation under conditions that do not interfere with the activity of the reporter transgene in WT embryos. We show that RALDH2 is responsible for most of the patterns of reporter transgene activity in the spinal cord and trunk mesodermal derivatives. However, reporter transgene activity was selectively detected in Raldh2−/− embryos within the mesonephric area that expresses RALDH3 and in medial-ventral cells of the spinal cord and posterior hindbrain, up to the level of the fifth rhombomere. The craniofacial patterns of RA-reporter activity were unaltered in Raldh2−/− mutants. Although these patterns correlated with the presence of Raldh1 and/or Raldh3 transcripts in eye, nasal, and inner ear epithelia, no such correlation was found within forebrain neuroepithelium. These data suggest the existence of additional RA-generating activities in the differentiating forebrain, hindbrain, and spinal cord, which, along with RALDH1 and RALDH3, may account for the development of Raldh2−/− mutants once these have been rescued for early lethality.
Development | 2010
Josselin Soyer; Lydie Flasse; Wolfgang Raffelsberger; Anthony Beucher; Christophe Orvain; Bernard Peers; Philippe Ravassard; Julien Vermot; Marianne Voz; Georg Mellitzer; Gérard Gradwohl
The transcription factor neurogenin 3 (Neurog3 or Ngn3) controls islet cell fate specification in multipotent pancreatic progenitor cells in the mouse embryo. However, our knowledge of the genetic programs implemented by Ngn3, which control generic and islet subtype-specific properties, is still fragmentary. Gene expression profiling in isolated Ngn3-positive progenitor cells resulted in the identification of the uncharacterized winged helix transcription factor Rfx6. Rfx6 is initially expressed broadly in the gut endoderm, notably in Pdx1-positive cells in the developing pancreatic buds, and then becomes progressively restricted to the endocrine lineage, suggesting a dual function in both endoderm development and islet cell differentiation. Rfx6 is found in postmitotic islet progenitor cells in the embryo and is maintained in all developing and adult islet cell types. Rfx6 is dependent on Ngn3 and acts upstream of or in parallel with NeuroD, Pax4 and Arx transcription factors during islet cell differentiation. In zebrafish, the Rfx6 ortholog is similarly found in progenitors and hormone expressing cells of the islet lineage. Loss-of-function studies in zebrafish revealed that rfx6 is required for the differentiation of glucagon-, ghrelin- and somatostatin-expressing cells, which, in the absence of rfx6, are blocked at the progenitor stage. By contrast, beta cells, whose number is only slightly reduced, were no longer clustered in a compact islet. These data unveil Rfx6 as a novel regulator of islet cell development.
Nature | 2009
Jessica R. Colantonio; Julien Vermot; David Wu; Adam Langenbacher; Scott E. Fraser; Jau-Nian Chen; Kent L. Hill
In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized ‘ear stones’ (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.
Cell Reports | 2014
Jacky G. Goetz; Emily Steed; Rita R. Ferreira; Stéphane Roth; Caroline Ramspacher; Francesco Boselli; Gilles Charvin; Michael Liebling; Claire Wyart; Yannick Schwab; Julien Vermot
VIDEO ABSTRACT The pattern of blood flow has long been thought to play a significant role in vascular morphogenesis, yet the flow-sensing mechanism that is involved at early embryonic stages, when flow forces are low, remains unclear. It has been proposed that endothelial cells use primary cilia to sense flow, but this has never been tested in vivo. Here we show, by noninvasive, high-resolution imaging of live zebrafish embryos, that endothelial cilia progressively deflect at the onset of blood flow and that the deflection angle correlates with calcium levels in endothelial cells. We demonstrate that alterations in shear stress, ciliogenesis, or expression of the calcium channel PKD2 impair the endothelial calcium level and both increase and perturb vascular morphogenesis. Altogether, these results demonstrate that endothelial cilia constitute a highly sensitive structure that permits the detection of low shear forces during vascular morphogenesis.
Development | 2005
Julien Vermot; Brigitte Schuhbaur; Hervé Le Mouellic; Peter McCaffery; Jean-Marie Garnier; Didier Hentsch; Philippe Brulet; Karen Niederreither; Pierre Chambon; Pascal Dollé; Isabelle Le Roux
Retinoic acid (RA) activity plays sequential roles during the development of the ventral spinal cord. Here, we have investigated the functions of local RA synthesis in the process of motoneuron specification and early differentiation using a conditional knockout strategy that ablates the function of the retinaldehyde dehydrogenase 2 (Raldh2) synthesizing enzyme essentially in brachial motoneurons, and later in mesenchymal cells at the base of the forelimb. Mutant (Raldh2L–/–) embryos display an early embryonic loss of a subset of Lim1+ brachial motoneurons, a mispositioning of Islet1+ neurons and inappropriate axonal projections of one of the nerves innervating extensor limb muscles, which lead to an adult forepaw neuromuscular defect. The molecular basis of the Raldh2L–/– phenotype relies in part on the deregulation of Hoxc8, which in turn regulates the RA receptor RARβ. We further show that Hoxc8 mutant mice, which exhibit a similar congenital forepaw defect, display at embryonic stages molecular defects that phenocopy the Raldh2L–/– motoneuron abnormalities. Thus, interdependent RA signaling and Hox gene functions are required for the specification of brachial motoneurons in the mouse.
Development | 2012
Jonathan B. Freund; Jacky G. Goetz; Kent L. Hill; Julien Vermot
Throughout morphogenesis, cells experience intracellular tensile and contractile forces on microscopic scales. Cells also experience extracellular forces, such as static forces mediated by the extracellular matrix and forces resulting from microscopic fluid flow. Although the biological ramifications of static forces have received much attention, little is known about the roles of fluid flows and forces during embryogenesis. Here, we focus on the microfluidic forces generated by cilia-driven fluid flow and heart-driven hemodynamics, as well as on the signaling pathways involved in flow sensing. We discuss recent studies that describe the functions and the biomechanical features of these fluid flows. These insights suggest that biological flow determines many aspects of cell behavior and identity through a specific set of physical stimuli and signaling pathways.
Hfsp Journal | 2008
Julien Vermot; Scott E. Fraser; Michael Liebling
Live imaging has gained a pivotal role in developmental biology since it increasingly allows real‐time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever‐faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post‐processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field.