Julien Vitay
Chemnitz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Vitay.
Neural Networks | 2006
Nicolas P. Rougier; Julien Vitay
We present a dynamic model of attention based on the Continuum Neural Field Theory that explains attention as being an emergent property of a neural population. This model is experimentally proved to be very robust and able to track one static or moving target in the presence of very strong noise or in the presence of a lot of distractors, even more salient than the target. This attentional property is not restricted to the visual case and can be considered as a generic attentional process of any spatio-temporal continuous input.
Neural Networks | 2012
Henning Schroll; Julien Vitay; Fred H. Hamker
Cortico-basalganglio-thalamic loops are involved in both cognitive processes and motor control. We present a biologically meaningful computational model of how these loops contribute to the organization of working memory and the development of response behavior. Via reinforcement learning in basal ganglia, the model develops flexible control of working memory within prefrontal loops and achieves selection of appropriate responses based on working memory content and visual stimulation within a motor loop. We show that both working memory control and response selection can evolve within parallel and interacting cortico-basalganglio-thalamic loops by Hebbian and three-factor learning rules. Furthermore, the model gives a coherent explanation for how complex strategies of working memory control and response selection can derive from basic cognitive operations that can be learned via trial and error.
European Journal of Neuroscience | 2014
Henning Schroll; Julien Vitay; Fred H. Hamker
In Parkinsons disease, a loss of dopamine neurons causes severe motor impairments. These motor impairments have long been thought to result exclusively from immediate effects of dopamine loss on neuronal firing in basal ganglia, causing imbalances of basal ganglia pathways. However, motor impairments and pathway imbalances may also result from dysfunctional synaptic plasticity – a novel concept of how Parkinsonian symptoms evolve. Here we built a neuro‐computational model that allows us to simulate the effects of dopamine loss on synaptic plasticity in basal ganglia. Our simulations confirm that dysfunctional synaptic plasticity can indeed explain the emergence of both motor impairments and pathway imbalances in Parkinsons disease, thus corroborating the novel concept. By predicting that dysfunctional plasticity results not only in reduced activation of desired responses, but also in their active inhibition, our simulations provide novel testable predictions. When simulating dopamine replacement therapy (which is a standard treatment in clinical practice), we observe a new balance of pathway outputs, rather than a simple restoration of non‐Parkinsonian states. In addition, high doses of replacement are shown to result in overshooting motor activity, in line with empirical evidence. Finally, our simulations provide an explanation for the intensely debated paradox that focused basal ganglia lesions alleviate Parkinsonian symptoms, but do not impair performance in healthy animals. Overall, our simulations suggest that the effects of dopamine loss on synaptic plasticity play an essential role in the development of Parkinsonian symptoms, thus arguing for a re‐conceptualisation of Parkinsonian pathophysiology.
Lecture Notes in Computer Science | 2005
Julien Vitay; Nicolas P. Rougier; Frédéric Alexandre
Although biomimetic autonomous robotics relies on the massively parallel architecture of the brain, the key issue is to temporally organize behaviour. The distributed representation of the sensory information has to be coherently processed to generate relevant actions. In the visual domain, we propose here a model of visual exploration of a scene by the means of localized computations in neural populations whose architecture allows the emergence of a coherent behaviour of sequential scanning of salient stimuli. It has been implemented on a real robotic platform exploring a moving and noisy scene including several identical targets.
PeerJ | 2017
Nicolas P. Rougier; Konrad Hinsen; Frédéric Alexandre; Thomas Arildsen; Lorena A. Barba; Fabien Benureau; C. Titus Brown; Pierre de Buyl; Ozan Caglayan; Andrew P. Davison; Marc-André Delsuc; Georgios Detorakis; Alexandra K. Diem; Damien Drix; Pierre Enel; Benoît Girard; Olivia Guest; Matt G. Hall; Rafael Neto Henriques; Xavier Hinaut; Kamil S. Jaron; Mehdi Khamassi; Almar Klein; Tiina Manninen; Pietro Marchesi; Daniel J. McGlinn; Christoph Metzner; Owen L. Petchey; Hans E. Plesser; Timothée Poisot
Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results, however computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested, hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.
Frontiers in Computational Neuroscience | 2010
Julien Vitay; Fred H. Hamker
Visual working memory (WM) tasks involve a network of cortical areas such as inferotemporal, medial temporal and prefrontal cortices. We suggest here to investigate the role of the basal ganglia (BG) in the learning of delayed rewarded tasks through the selective gating of thalamocortical loops. We designed a computational model of the visual loop linking the perirhinal cortex, the BG and the thalamus, biased by sustained representations in prefrontal cortex. This model learns concurrently different delayed rewarded tasks that require to maintain a visual cue and to associate it to itself or to another visual object to obtain reward. The retrieval of visual information is achieved through thalamic stimulation of the perirhinal cortex. The input structure of the BG, the striatum, learns to represent visual information based on its association to reward, while the output structure, the substantia nigra pars reticulata, learns to link striatal representations to the disinhibition of the correct thalamocortical loop. In parallel, a dopaminergic cell learns to associate striatal representations to reward and modulates learning of connections within the BG. The model provides testable predictions about the behavior of several areas during such tasks, while providing a new functional organization of learning within the BG, putting emphasis on the learning of the striatonigral connections as well as the lateral connections within the substantia nigra pars reticulata. It suggests that the learning of visual WM tasks is achieved rapidly in the BG and used as a teacher for feedback connections from prefrontal cortex to posterior cortices.
Frontiers in Neuroinformatics | 2015
Julien Vitay; Helge Ülo Dinkelbach; Fred H. Hamker
Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions.
international symposium on neural networks | 2005
Julien Vitay; Nicolas P. Rougier
We present a distributed and dynamic model of visual attention based on the continuum neural field theory that allows to sequentially focusing salient locations in an image. A working memory system ensures that the corresponding objects are only focused once, even if they are moving around, such that the visual search is efficient. The model has been implemented on a robotic platform in order to search for natural objects such as fruits.
Frontiers in Neurorobotics | 2014
Julien Vitay; Fred H. Hamker
Neural activity in dopaminergic areas such as the ventral tegmental area is influenced by timing processes, in particular by the temporal expectation of rewards during Pavlovian conditioning. Receipt of a reward at the expected time allows to compute reward-prediction errors which can drive learning in motor or cognitive structures. Reciprocally, dopamine plays an important role in the timing of external events. Several models of the dopaminergic system exist, but the substrate of temporal learning is rather unclear. In this article, we propose a neuro-computational model of the afferent network to the ventral tegmental area, including the lateral hypothalamus, the pedunculopontine nucleus, the amygdala, the ventromedial prefrontal cortex, the ventral basal ganglia (including the nucleus accumbens and the ventral pallidum), as well as the lateral habenula and the rostromedial tegmental nucleus. Based on a plausible connectivity and realistic learning rules, this neuro-computational model reproduces several experimental observations, such as the progressive cancelation of dopaminergic bursts at reward delivery, the appearance of bursts at the onset of reward-predicting cues or the influence of reward magnitude on activity in the amygdala and ventral tegmental area. While associative learning occurs primarily in the amygdala, learning of the temporal relationship between the cue and the associated reward is implemented as a dopamine-modulated coincidence detection mechanism in the nucleus accumbens.
Journal of Cognitive Neuroscience | 2008
Julien Vitay; Fred H. Hamker
The perirhinal cortex is involved not only in object recognition and novelty detection but also in multimodal integration, reward association, and visual working memory. We propose a computational model that focuses on the role of the perirhinal cortex in working memory, particularly with respect to sustained activities and memory retrieval. This model describes how different partial informations are integrated into assemblies of neurons that represent the identity of an object. Through dopaminergic modulation, the resulting clusters can retrieve the global information with recurrent interactions between neurons. Dopamine leads to sustained activities after stimulus disappearance that form the basis of the involvement of the perirhinal cortex in visual working memory processes. The information carried by a cluster can also be retrieved by a partial thalamic or prefrontal stimulation. Thus, we suggest that areas involved in planning and memory coordination encode a pointer to access the detailed information encoded in the associative cortex such as the perirhinal cortex.