Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliet M. Daniel is active.

Publication


Featured researches published by Juliet M. Daniel.


Nucleic Acids Research | 2002

The p120ctn-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides

Juliet M. Daniel; Christopher M. Spring; Howard C. Crawford; Albert B. Reynolds; Akeel Baig

The p120(ctn)-binding partner Kaiso is a new member of the POZ-zinc finger family of transcription factors implicated in development and cancer. To understand the role of Kaiso in gene regulation and p120(ctn)-mediated signaling and adhesion, we sought to identify Kaiso-specific DNA binding sequences and potential target genes. Here we demonstrate that Kaiso is a dual specificity DNA-binding protein that recognizes the specific consensus sequence TCCTGCNA as well as methyl-CpG dinucleotides. A minimal core sequence CTGCNA was identified as sufficient for Kaiso binding. Two copies of the Kaiso-binding site are present in the human and murine matrilysin promoters, implicating matrilysin as a candidate target gene for Kaiso. In electrophoretic mobility shift assays, matrilysin promoter-derived oligonucleotide probes formed a complex with GST-Kaiso fusion proteins possessing the zinc finger domain but not with fusion proteins lacking the zinc fingers. We further determined that only Kaiso zinc fingers 2 and 3 were necessary and sufficient for sequence-specific DNA binding. Interestingly, Kaiso also possesses a methyl-CpG-dependent DNA-binding activity distinct from its sequence-specific DNA binding. However, Kaiso has a higher affinity for the TCCTGCNA consensus than for the methyl-CpG sites. Furthermore, the DNA-binding ability of Kaiso with either recognition site was inhibited by p120(ctn). Kaiso thus appears to have two modes of DNA binding and transcriptional repression, both of which may be modulated by its interaction with the adhesion cofactor p120(ctn).


Nature Cell Biology | 2004

Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin

Si Wan Kim; Jae Il Park; Christopher M. Spring; Amy K. Sater; Hong Ji; Abena A. Otchere; Juliet M. Daniel; Pierre D. McCrea

Gastrulation movements are critical for establishing the three principal germ layers and the basic architecture of vertebrate embryos. Although the individual molecules and pathways involved are not clearly understood, non-canonical Wnt signals are known to participate in developmental processes, including planar cell polarity and directed cell rearrangements. Here we demonstrate that the dual-specificity transcriptional repressor Kaiso, first identified in association with p120-catenin, is required for Xenopus gastrulation movements. In addition, depletion of xKaiso results in increased expression of the non-canonical xWnt11, which contributes to the xKaiso knockdown phenotype as it is significantly rescued by dominant-negative Wnt11. We further demonstrate that xWnt11 is a direct gene target of xKaiso and that p120-catenin association relieves xKaiso repression in vivo. Our results indicate that p120-catenin and Kaiso are essential components of a new developmental gene regulatory pathway that controls vertebrate morphogenesis.


Journal of Biological Chemistry | 2008

A Role for the Cleaved Cytoplasmic Domain of E-cadherin in the Nucleus

Emma C. Ferber; Mihoko Kajita; Anthony Wadlow; Lara Tobiansky; Carien Niessen; Hiroyoshi Ariga; Juliet M. Daniel; Yasuyuki Fujita

Cell-cell contacts play a vital role in intracellular signaling, although the molecular mechanisms of these signaling pathways are not fully understood. E-cadherin, an important mediator of cell-cell adhesions, has been shown to be cleaved by γ-secretase. This cleavage releases a fragment of E-cadherin, E-cadherin C-terminal fragment 2 (E-cad/CTF2), into the cytosol. Here, we study the fate and function of this fragment. First, we show that coexpression of the cadherin-binding protein, p120 catenin (p120), enhances the nuclear translocation of E-cad/CTF2. By knocking down p120 with short interfering RNA, we also demonstrate that p120 is necessary for the nuclear localization of E-cad/CTF2. Furthermore, p120 enhances and is required for the specific binding of E-cad/CTF2 to DNA. Finally, we show that E-cad/CTF2 can regulate the p120-Kaiso-mediated signaling pathway in the nucleus. These data indicate a novel role for cleaved E-cadherin in the nucleus.


Journal of Cell Science | 2004

NLS-dependent nuclear localization of p120ctn is necessary to relieve Kaiso-mediated transcriptional repression

Kevin F. Kelly; Christopher M. Spring; Abena A. Otchere; Juliet M. Daniel

The Armadillo catenin p120ctn regulates cadherin adhesive strength at the plasma membrane and interacts with the novel BTB/POZ transcriptional repressor Kaiso in the nucleus. The dual localization of p120ctn at cell-cell junctions and in the nucleus suggests that its nucleocytoplasmic trafficking is tightly regulated. Here we report on the identification of a specific and highly basic nuclear localization signal (NLS) in p120ctn. The functionality of the NLS was validated by its ability to direct the nuclear localization of a heterologous β-galactosidase-GFP fusion protein. Mutating two key positively charged lysines to neutral alanines in the NLS of full-length p120ctn inhibited both p120ctn nuclear localization as well as the characteristic p120ctn-induced branching phenotype that correlates with increased cell migration. However, while these findings and others suggested that nuclear localization of p120ctn was crucial for the p120ctn-induced branching phenotype, we found that forced nuclear localization of both wild-type and NLS-mutated p120ctn did not induce branching. Recently, we also found that one role of p120ctn was to regulate Kaiso-mediated transcriptional repression. However, it remained unclear whether p120ctn sequestered Kaiso in the cytosol or directly inhibited Kaiso transcriptional activity in the nucleus. Using minimal promoter assays, we show here that the regulatory effect of p120ctn on Kaiso transcriptional activity requires the nuclear translocation of p120ctn. Therefore, an intact NLS in p120ctn is requisite for its first identified regulatory role of the transcriptional repressor Kaiso.


Molecular and Cellular Biology | 2004

Regulation of the Rapsyn Promoter by Kaiso and δ-Catenin

Marianna Rodova; Kevin F. Kelly; Michael N. VanSaun; Juliet M. Daniel; Michael J. Werle

ABSTRACT Rapsyn is a synapse-specific protein that is required for clustering acetylcholine receptors at the neuromuscular junction. Analysis of the rapsyn promoter revealed a consensus site for the transcription factor Kaiso within a region that is mutated in a subset of patients with congenital myasthenic syndrome. Kaiso is a POZ-zinc finger family transcription factor which recognizes the specific core consensus sequence CTGCNA (where N is any nucleotide). Previously, the only known binding partner for Kaiso was the cell adhesion cofactor, p120 catenin. Here we show that δ-catenin, a brain-specific member of the p120 catenin subfamily, forms a complex with Kaiso. Antibodies against Kaiso and δ-catenin recognize proteins in the nuclei of C2C12 myocytes and at the postsynaptic domain of the mouse neuromuscular junction. Endogenous Kaiso in C2C12 cells coprecipitates with the rapsyn promoter in vivo as shown by chromatin immunoprecipitation assay. Minimal promoter assays demonstrated that the rapsyn promoter can be activated by Kaiso and δ-catenin; this activation is apparently muscle specific. These results provide the first experimental evidence that rapsyn is a direct sequence-specific target of Kaiso and δ-catenin. We propose a new model of synapse-specific transcription that involves the interaction of Kaiso, δ-catenin, and myogenic transcription factors at the neuromuscular junction.


Journal of Biological Chemistry | 2005

The Human Enhancer Blocker CTC-binding Factor Interacts with the Transcription Factor Kaiso

Pierre-Antoine Defossez; Kevin F. Kelly; Guillaume J. Filion; Roberto Pérez-Torrado; Frédérique Magdinier; Hervé Menoni; Curtis L. Nordgaard; Juliet M. Daniel; Eric Gilson

CTC-binding factor (CTCF) is a DNA-binding protein of vertebrates that plays essential roles in regulating genome activity through its capacity to act as an enhancer blocker. We performed a yeast two-hybrid screen to identify protein partners of CTCF that could regulate its activity. Using full-length CTCF as bait we recovered Kaiso, a POZ-zinc finger transcription factor, as a specific binding partner. The interaction occurs through a C-terminal region of CTCF and the POZ domain of Kaiso. CTCF and Kaiso are co-expressed in many tissues, and CTCF was specifically co-immunoprecipitated by several Kaiso monoclonal antibodies from nuclear lysates. Kaiso is a bimodal transcription factor that recognizes methylated CpG dinucleotides or a conserved unmethylated sequence (TNGCAGGA, the Kaiso binding site). We identified one consensus unmethylated Kaiso binding site in close proximity to the CTCF binding site in the human 5′ β-globin insulator. We found, in an insulation assay, that the presence of this Kaiso binding site reduced the enhancer-blocking activity of CTCF. These data suggest that the Kaiso-CTCF interaction negatively regulates CTCF insulator activity.


Journal of Cell Science | 2004

Nuclear import of the BTB/POZ transcriptional regulator Kaiso.

Kevin F. Kelly; Abena A. Otchere; Monica Graham; Juliet M. Daniel

Kaiso is a BTB/POZ transcription factor that functions in vitro as a transcriptional repressor of the matrix metalloproteinase gene matrilysin and the non-canonical Wnt signaling gene Wnt-11, and as an activator of the acetylcholine-receptor-clustering gene rapsyn. Similar to other BTB/POZ proteins (e.g. Bcl-6, PLZF, HIC-1), endogenous Kaiso localizes predominantly to the nuclei of mammalian cells. To date, however, the mechanism of nuclear import for most POZ transcription factors, including Kaiso, remain unknown. Here, we report the identification and characterization of a highly basic nuclear localization signal (NLS) in Kaiso. The functionality of this NLS was verified by its ability to target a heterologous β-galactosidase/green-fluorescent-protein fusion protein to nuclei. The mutation of one positively charged lysine to alanine in the NLS of full-length Kaiso significantly inhibited its nuclear localization in various cell types. In addition, wild-type Kaiso, but not NLS-defective Kaiso, interacted directly with the nuclear import receptor Importin-α2 both in vitro and in vivo. Finally, minimal promoter assays using a sequence-specific Kaiso-binding-site fusion with luciferase as reporter demonstrated that the identified NLS was crucial for Kaiso-mediated transcriptional repression. The identification of a Kaiso NLS thus clarifies the mechanism by which Kaiso translocates to the nucleus to regulate transcription of genes with diverse roles in cell growth and development.


PLOS ONE | 2012

Nuclear Kaiso Expression Is Associated with High Grade and Triple-Negative Invasive Breast Cancer

Jeroen Vermeulen; Robert A. H. van de Ven; Cigdem Ercan; Petra van der Groep; Elsken van der Wall; Peter Bult; Matthias Christgen; Ulrich Lehmann; Juliet M. Daniel; Paul J. van Diest; Patrick W. B. Derksen

Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC) (p = 0.007), while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC) (p = 0.006). Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023), ERα negativity (p = 0.001), and the HER2-driven and basal/triple-negative breast cancers (p = 0.018). Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001) and invasive breast cancer overexpressing EGFR (p = 0.019). We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120) (p<0.01). In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005). We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC.


PLOS ONE | 2012

Kaiso represses the cell cycle gene cyclin D1 via sequence-specific and methyl-CpG-dependent mechanisms.

Nickett S. Donaldson; Christina C. Pierre; Michelle I. Anstey; Shaiya C. Robinson; Sonali Weerawardane; Juliet M. Daniel

Kaiso is the first member of the POZ family of zinc finger transcription factors reported to bind DNA with dual-specificity in both a sequence- and methyl-CpG-specific manner. Here, we report that Kaiso associates with and regulates the cyclin D1 promoter via the consensus Kaiso binding site (KBS), and also via methylated CpG-dinucleotides. The methyl-CpG sites appear critical for Kaiso binding to the cyclin D1 promoter, while a core KBS in close proximity to the methyl-CpGs appears to stabilize Kaiso DNA binding. Kaiso’s binding to both sites was demonstrated in vitro using electrophoretic mobility shift assays (EMSA) and in vivo using Chromatin immunoprecipitation (ChIP). To elucidate the functional relevance of Kaiso’s binding to the cyclin D1 promoter, we assessed Kaiso overexpression effects on a minimal cyclin D1 promoter-reporter that contains both KBS and CpG sites. Kaiso repressed this minimal cyclin D1 promoter-reporter in a dose-dependent manner and transcriptional repression occurred in a KBS-specific and methyl-CpG-dependent manner. Collectively our data validates cyclin D1 as a Kaiso target gene and demonstrates a mechanism for Kaiso binding and regulation of the cyclin D1 promoter. Our data also provides a mechanistic basis for how Kaiso may regulate other target genes whose promoters possess both KBS and methyl-CpG sites.


Journal of Neurochemistry | 2009

Hypoxia inducible factor (HIF)-2α is required for the development of the catecholaminergic phenotype of sympathoadrenal cells

Stephen Brown; Kevin F. Kelly; Juliet M. Daniel; Colin A. Nurse

The basic helix‐loop‐helix transcription factor, hypoxia inducible factor (HIF)‐2α has been implicated in the development of the catecholaminergic phenotype in cells of the sympathoadrenal (SA) lineage; however, the underlying mechanisms and HIF‐2α targets remain unclear. Using an immortalized rat adrenomedullary chromaffin cell line (MAH cells) derived from a fetal SA progenitor, we examined the role of HIF‐2α in catecholamine biosynthesis. Chronic hypoxia (2% O2, 24 h) induced HIF‐2α in MAH cells but expression of the rate‐limiting enzyme, tyrosine hydroxylase (TH) and catecholamine levels were unaltered. Interestingly, HIF‐2α depleted MAH cells showed dramatically lower (5–12 times) levels of dopamine and noradrenaline compared with wild‐type and scrambled controls, even in normoxia (21% O2). This was correlated with a marked reduction in the expression of DOPA decarboxylase (DDC) and dopamine β hydroxylase (DβH) but not TH. Chromatin immunoprecipitation assays revealed that HIF‐2α was bound to the DDC gene promoter which contains two putative hypoxia response elements. These data suggest that a basal level of HIF‐2α function is required for the normal developmental expression of DDC and DβH in SA progenitor cells, and that loss of this function leads to impaired catecholamine biosynthesis.

Collaboration


Dive into the Juliet M. Daniel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge