Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julieta M. Manrique is active.

Publication


Featured researches published by Julieta M. Manrique.


Journal of Virology | 2003

Positive and Negative Modulation of Virus Infectivity and Envelope Glycoprotein Incorporation into Virions by Amino Acid Substitutions at the N Terminus of the Simian Immunodeficiency Virus Matrix Protein

Julieta M. Manrique; Cristina C. P. Celma; Eric Hunter; José L. Affranchino; Silvia A. González

ABSTRACT The matrix (MA) protein of the simian immunodeficiency viruses (SIVs) is encoded by the amino-terminal region of the Gag precursor and is the component of the viral capsid that lines the inner surface of the virus envelope. Previously, we identified domains in the SIV MA that are involved in the transport of Gag to the plasma membrane and in particle assembly. In this study, we characterized the role in the SIV life cycle of highly conserved residues within the SIV MA region spanning the two N-terminal α-helices H1 and H2. Our analyses identified two classes of MA mutants: (i) viruses encoding amino acid substitutions within α-helices H1 or H2 that were defective in envelope (Env) glycoprotein incorporation and exhibited impaired infectivity and (ii) viruses harboring mutations in the β-turn connecting helices H1 and H2 that were more infectious than the wild-type virus and displayed an enhanced ability to incorporate the Env glycoprotein. Remarkably, among the latter group of MA mutants, the R22L/G24L double amino acid substitution increased virus infectivity eightfold relative to the wild-type virus in single-cycle infectivity assays, an effect that correlated with a similar increase in Env incorporation. Furthermore, the R22L/G24L MA mutation partially or fully complemented single-point MA mutations that severely impair or block Env incorporation and virus infectivity. Our finding that the incorporation of the Env glycoprotein into virions can be upregulated by specific mutations within the SIV MA amino terminus strongly supports the notion that the SIV MA domain mediates Gag-Env association during particle formation.


AIDS Research and Human Retroviruses | 2001

Small variations in the length of the cytoplasmic domain of the simian immunodeficiency virus transmembrane protein drastically affect envelope incorporation and virus entry.

Julieta M. Manrique; Cristina C. P. Celma; José L. Affranchino; Eric Hunter; Silvia A. González

Simian immunodeficiency viruses (SIVs) have an envelope (Env) glycoprotein with an unusually long cytoplasmic domain of 164 amino acids. In this article, we have characterized a series of SIV Env truncation mutants in which the cytoplasmic domain was progressively shortened from its carboxyl terminus by 20 amino acids. Expression by means of the vaccinia virus system showed that all of the SIV Env mutants were expressed and processed into the surface and transmembrane (TM) subunits. When the ability of the Env mutants to associate with SIV Gag particles was examined, we found that deletion of 20 to 80 residues from the carboxyl terminus of the SIV TM cytoplasmic tail abrogated the incorporation of the Env glycoprotein into particles. By contrast, further truncation of the SIV TM protein by 100 to 140 amino acids restored the ability of the Env protein to associate with Gag particles. Interestingly, mutants bearing a 44- or 24-amino acid cytoplasmic domain were incorporated at levels significantly higher than those of the wild-type Env. Single-cycle infectivity assays showed that Env mutants bearing cytoplasmic tails of 144 to 64 amino acids were highly inefficient at mediating virus entry. By contrast, truncation of the cytoplasmic domain to 44 or 24 amino acids drastically enhanced virus infectivity with respect to that conferred by the full-length Env protein. Our results demonstrate that small variations in the length of the SIV Env cytoplasmic domain dramatically influence Env-mediated viral functions.


Virology | 2008

In vitro binding of simian immunodeficiency virus matrix protein to the cytoplasmic domain of the envelope glycoprotein

Julieta M. Manrique; José L. Affranchino; Silvia A. González

Incorporation of the envelope (Env) glycoprotein into budding virions is a key step in the replication cycle of lentiviruses. Previously, we provided genetic and biochemical evidence indicating that Env packaging into simian immunodeficiency virus (SIV) particles is mediated by the association of the Env cytoplasmic domain (CD) with the matrix (MA) domain of Gag. In this study, we developed an in vitro binding assay that, based on recombinant proteins expressed in bacteria, allowed us to demonstrate the physical interaction between the SIV Env CD and the MA in the absence of other viral or cellular proteins. We show that this association is blocked by mutations in each of the interacting domains that have been reported to interfere in vivo with the incorporation of Env into SIV virions. Moreover, we determined that the binding of SIV MA to the Env CD is saturable with a dissociation constant of 7x10(-7) M. Interestingly, the SIV MA is capable of specifically interacting in vitro with the human immunodeficiency virus type 1 Env CD, but not with that of the distantly related feline immunodeficiency virus. Our results strongly support the notion that the association between the SIV MA and Env CD plays a central role in the process of SIV Env incorporation into Gag-made particles.


Biodiversity and Conservation | 2015

The peril of PCR inhibitors in environmental samples: the case of Didymosphenia geminata

Leandro R. Jones; Noelia Mariel Uyua; Julieta M. Manrique

Since the introduction of polymerase chain reaction (PCR) biodiversity study has been significantly influenced by the chance of generating unprecedented amounts of molecular data. Although it is a robust technique, those applications requiring high sensitivity and reproducibility, that is PCR detection and quantitative PCR, can be negatively affected by PCR inhibition. This is particularly challenging for diverse kinds of samples included the environmental ones, which usually contain complex mixtures of a variety of inhibitory substances. The problem of PCR inhibition can be overcome, or ameliorated, by implementing adequate protocols of nucleic acids purification, internal controls and modern analytical approaches focused on PCR kinetics. Herein, we remark these procedures and describe the general techniques that can be used to optimize DNA extraction protocols for PCR applications. In addition, we show that PCR inhibition might have negative consequences in molecular studies of Didymosphenia geminata, an invasive microalga that have recently developed massive blooms in temperate regions worldwide, and provide general guidelines for dealing with this problem.


Journal of Microbiological Methods | 2014

An optimized DNA extraction protocol for benthic Didymosphenia geminata

Noelia Mariel Uyua; Julieta M. Manrique; Leandro R. Jones

Didymosphenia geminata mats display few cells in relation to extracellular material and contain polysaccharides and heavy metals that interfere with molecular studies. We describe an optimized DNA extraction protocol that help to overcome these difficulties. Our protocol outperformed five previously described DNA extraction techniques.


Journal of General Virology | 2016

Virus evolution during chronic hepatitis B virus infection as revealed by ultradeep sequencing data

Leandro R. Jones; Mariano Sede; Julieta M. Manrique; Jorge Quarleri

Despite chronic hepatitis B virus (HBV) infection (CHB) being a leading cause of liver cirrhosis and cancer, HBV evolution during CHB is not fully understood. Recent studies have indicated that virus diversity progressively increases along the course of CHB and that some virus mutations correlate with severe liver conditions such as chronic hepatitis, cirrhosis and hepatocellular carcinoma. Using ultradeep sequencing (UDS) data from an intrafamilial case, we detected such mutations at low frequencies among three immunotolerant patients and at high frequencies in an inactive carrier. Furthermore, our analyses indicated that the HBV population from the seroconverter patient underwent many genetic changes in response to virus clearance. Together, these data indicate a potential use of UDS for developing non-invasive biomarkers for monitoring disease changes over time or in response to specific therapies. In addition, our analyses revealed that virus clearance seemed not to require the virus effective population size to decline. A detailed genetic analysis of the viral lineages arising during and after the clearance suggested that mutations at or close to critical elements of the core promoter (enhancer II, epsilon encapsidation signal, TA2, TA3 and direct repeat 1-hormone response element) might be responsible for a sustained replication. This hypothesis requires the decline in virus load to be explained by constant clearance of virus-producing hepatocytes, consistent with the sustained progress towards serious liver conditions experienced by many CHB patients.


AIDS Research and Human Retroviruses | 2004

Second-Site Revertants of a Simian Immunodeficiency Virus gp41 Mutant Defective in Envelope Glycoprotein Incorporation

Cristina C. P. Celma; Julieta M. Manrique; Eric Hunter; José L. Affranchino; Silvia A. González

We previously characterized a series of small in-frame deletions within the C-terminal third of the simian immunodeficiency virus (SIV) gp41 cytoplasmic domain that significantly impair the incorporation of the envelope (Env) glycoprotein into particles and Env-mediated virus entry. Among these mutations, removal of Env residues 832-837 caused the most drastic defective phenotype. In the present study, we introduced the Delta832-837 deletion into the PBj1.9 molecular clone and investigated the effect of this env mutation on virus replication in the CEMx174 cell line. This in-frame deletion was found to severely compromise virus replication. Interestingly, long-term culture of the PBjEnvDelta832-837 mutant led to the emergence of two independent populations of revertant viruses that, while differing in the time point at which they appear, encode truncated gp41 cytoplasmic tails of similar lengths. The first emergent virus population contained a premature stop codon mutation at Env residue 778, whereas the late-appearing population harbored a stop codon mutation at Env residue 774, which results in the truncation of the gp41 cytoplasmic tail to 52 and 48 amino acids, respectively. Analysis of derivatives of PBjEnvDelta832-837 containing either the Tyr778stop or the Trp774stop mutations demonstrated that these second-site changes were sufficient to reverse the Env incorporation and infectivity defects imposed by the original Delta832-837 deletion, as well as to confer to the Env double mutants essentially wild-type replication kinetics. Our results thus provide further insight into the mechanisms underlying SIV adaptation to novel selective forces.


PLOS ONE | 2015

Molecular Characterization of the First Bovine Herpesvirus 4 (BoHV-4) Strains Isolated from In Vitro Bovine Embryos production in Argentina

Erika González Altamiranda; Julieta M. Manrique; Sandra E. Pérez; Glenda L. Ríos; A.C. Odeón; M.R. Leunda; Leandro R. Jones; Andrea Verna

Bovine herpesvirus 4 (BoHV-4) is increasingly considered as responsible for various problems of the reproductive tract. The virus infects mainly blood mononuclear cells and displays specific tropism for vascular endothelia, reproductive and fetal tissues. Epidemiological studies suggest its impact on reproductive performance, and its presence in various sites in the reproductive tract highlights its potential transmission in transfer-stage embryos. This work describes the biological and genetic characterization of BoHV-4 strains isolated from an in vitro bovine embryo production system. BoHV-4 strains were isolated in 2011 and 2013 from granulosa cells and bovine oocytes from ovary batches collected at a local abattoir, used as “starting material” for in vitro production of bovine embryos. Compatible BoHV-4-CPE was observed in the co-culture of granulosa cells and oocytes with MDBK cells. The identity of the isolates was confirmed by PCR assays targeting three ORFs of the viral genome. The phylogenetic analyses of the strains suggest that they were evolutionary unlinked. Therefore it is possible that BoHV-4 ovary infections occurred regularly along the evolution of the virus, at least in Argentina, which can have implications in the systems of in vitro embryo production. Thus, although BoHV-4 does not appear to be a frequent risk factor for in vitro embryo production, data are still limited. This study reveals the potential of BoHV-4 transmission via embryo transfer. Moreover, the high variability among the BoHV-4 strains isolated from aborted cows in Argentina highlights the importance of further research on the role of this virus as an agent with the potential to cause reproductive disease in cattle. The genetic characterization of the isolated strains provides data to better understand the pathogenesis of BoHV-4 infections. Furthermore, it will lead to fundamental insights into the molecular aspects of the virus and the means by which these strains circulate in the herds.


Molecular Phylogenetics and Evolution | 2017

Are ocean currents to slow to counteract SAR11 evolution? A next-generation sequencing, phylogeographic analysis.

Julieta M. Manrique; Leandro R. Jones

This work set out to shed light on the phylogeography of the SAR11 clade of Alphaproteobacteria, which is probably the most abundant group of heterotrophic bacteria on Earth. In particular, we assessed the degree to which empirical evidence (environmental DNA sequences) supports the concept that SAR11 lineages evolve faster than they are dispersed thus generating vicariant distributions, as predicted by recent simulation efforts. We generated 16S rRNA gene sequences from surface seawater collected at the South West Atlantic Ocean and combined these data with previously published sequences from similar environments from elsewhere. Altogether, these data consisted in about 1e6 reads, from which we generated 355,306 high quality sequences of which 95,318 corresponded to SAR11. Quantitative phylogeographic analyses supported the existence of a spatially explicit distribution of SAR11 species and provided evidence in favor of the idea that dispersal limitations significantly contribute to SAR11 radiation throughout the worlds oceans. Likewise, pairwise phylogenetic distances between the communities studied here were significantly correlated with the genetic divergences predicted by a previously proposed neutral model. As discussed in the paper, these findings are compatible with the concept that the ocean surface constitutes a homogeneous environment for SAR11, in agreement with previous experimental data. We discuss the implications of this hypothesis in a global change scenario. This is the first study combining high throughput sequencing and phylogenic analysis to study bacterial phylogeography and reporting a distance decay pattern of phylogenetic distances for bacteria.


Virus Genes | 2016

Comparative study on the in vitro replication and genomic variability of Argentinean field isolates of bovine herpesvirus type 4 (BoHV-4)

Andrea Verna; S.E. Pérez; Julieta M. Manrique; M.R. Leunda; A.C. Odeón; Leandro R. Jones

Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus, belonging to the Rhadinovirus genus, which is increasingly associated with various problems of the reproductive tract of cattle. In Argentina, analysis of BoHV-4 strains isolated from cervico-vaginal mucus of aborted cows revealed a high genetic divergence among strains, which could be classified in three different groups: Genotype 1 comprises Movar-like strains (European prototype), Genotype 2 includes DN599-like strains (American prototype) and Genotype 3 corresponds to a novel genotype group. Understanding the replication behavior in cell cultures and the molecular characteristics of this pathogen of cattle is critical for the rational design of in vitro experiments. The aim of this work was to quantitatively evaluate the replication properties of different Argentinean BoHV-4 strains and to characterize their phylogenetic relationships. Significant differences were evident among the virus titers of the different BoHV-4 isolates in vitro. The most conserved gene was the major capsid protein (ORF25). The glycoprotein B (gB), glycoprotein H (gH), and thymidine kinsase (TK) genes displayed both synonymous and non-synonymous substitutions, with the highest diversity observed for gB, which displayed amino acid substitutions in 24 out of the 178 positions examined. Strains 09/759, 12/512, and 07/568 presented a deletion encompassing amino acid position 27 to 35, whereas strains 07/435 and 09/227 had a deletion from position 28 to 35. Two strains, 07/435 and 09/227, also displayed the highest divergence compared to the other strains analyzed. This study provides information about the in vitro replication and behavior of nine field isolates of BoHV-4. These findings are relevant since available information on the in vitro growth characteristics of BoHV-4 strains is scarce. The results from this study may also be useful for establishing comparisons with other related viruses.

Collaboration


Dive into the Julieta M. Manrique's collaboration.

Top Co-Authors

Avatar

Leandro R. Jones

International Trademark Association

View shared research outputs
Top Co-Authors

Avatar

José L. Affranchino

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Silvia A. González

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Jorge Quarleri

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariano Sede

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Andrea Y. Calvo

Estación de Fotobiología Playa Unión

View shared research outputs
Top Co-Authors

Avatar

Franco Moretti

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge