Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julieta Maymó is active.

Publication


Featured researches published by Julieta Maymó.


Placenta | 2011

Review: Leptin gene expression in the placenta ― Regulation of a key hormone in trophoblast proliferation and survival

Julieta Maymó; A. Pérez Pérez; Yésica Gambino; J.C. Calvo; Víctor Sánchez-Margalet; Cecilia L. Varone

Leptin is a 16000 MW protein originally described as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblast cells. Study of the major signaling pathways known to be triggered by leptin receptor has revealed that leptin stimulates JAK/STAT, MAPK and PI3K pathways in placental cells. Leptin also exerts an antiapoptotic action in placenta and this effect is mediated by the MAPK pathway. Moreover, leptin stimulates protein synthesis by activating the translational machinery via both PI3K and MAPK pathways. Expression of leptin in placenta is highly regulated, suggesting that certain key pregnancy molecules participate in such regulation. An important hormone in reproduction, hCG, induces leptin expression in trophoblast cells and this effect involves the MAPK signal transduction pathway. Moreover, the cyclic nucleotide cAMP, which has profound actions upon human trophoblast function, also stimulates leptin expression and this effect seems to be mediated by crosstalk between the PKA and MAPK signaling pathways. Estrogens play a central role in reproduction. 17β-estradiol upregulates leptin expression in placental cells through genomic and non-genomic actions, probably via crosstalk between estrogen receptor-α and the MAPK and PI3K signal transduction pathways. Taken together these findings give a better understanding of the function of leptin and the regulatory mechanisms of leptin expression in human placental trophoblast and further support the importance of leptin in the biology of reproduction.


Biology of Reproduction | 2010

17Beta-Estradiol Enhances Leptin Expression in Human Placental Cells Through Genomic and Nongenomic Actions

Yésica Gambino; Julieta Maymó; Antonio Pérez-Pérez; José Luis Dueñas; Víctor Sánchez-Margalet; Juan Carlos Calvo; Cecilia L. Varone

The process of embryo implantation and trophoblast invasion is considered the most limiting factor in the establishment of pregnancy. Leptin was originally described as an adipocyte-derived signaling molecule for the central control of metabolism. However, it has been suggested that leptin is involved in other functions during pregnancy, particularly in the placenta, where it was found to be expressed. In the present work, we have found a stimulatory effect of 17beta-estradiol (E2) on endogenous leptin expression, as analyzed by Western blot, in both the BeWo choriocarcinoma cell line and normal placental explants. This effect was time and dose dependent. Maximal effect was achieved at 10 nM in BeWo cells and 1 nM in placental explants. The E2 effects involved the estrogen receptor, as the antagonist ICI 182 780 inhibited E2-induced leptin expression. Moreover, E2 treatment enhanced leptin promoter activity up to 4-fold, as evaluated by transient transfection with a plasmid construction containing the leptin promoter region and the reporter gene luciferase. This effect was dose dependent. Deletion analysis demonstrated that a minimal promoter region between −1951 and −1847 bp is both necessary and sufficient to achieve E2 effects. Estradiol action involved estrogen receptor 1, previously known as estrogen receptor alpha, as cotransfection with a vector encoding estrogen receptor 1 potentiated the effects of E2 on leptin expression. Moreover, E2 action probably involves membrane receptors too, as treatment with an estradiol-bovine serum albumin complex partially enhanced leptin expression. The effects of E2 could be blocked by pharmacologic inhibition of MAPK and the phosphoinositide-3-kinase (PI3K) pathways with 50 μM PD98059 and 0.1 μM Wortmannin, respectively. Moreover, cotransfection of dominant negative mutants of MAP2K or MAPK blocked E2 induction of leptin promoter. On the other hand, E2 treatment promoted MAPK1/MAPK3 and AKT phosphorylation in placental cells. In conclusion, we provide evidence suggesting that E2 induces leptin expression in trophoblastic cells, probably through genomic and nongenomic actions via crosstalk between estrogen receptor 1 and MAPK and PI3K signal transduction pathways.


Archives of Biochemistry and Biophysics | 2008

Leptin prevents apoptosis of trophoblastic cells by activation of MAPK pathway

Antonio Pérez-Pérez; Julieta Maymó; José Luis Dueñas; R. Goberna; Juan Carlos Calvo; Cecilia L. Varone; Víctor Sánchez-Margalet

Leptin (Ob), the peripheral signal produced by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. Recently, we have demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work we aimed to study the signal transduction pathways that mediate the trophic effect of leptin in placenta, by using the human placenta choriocarcinoma JEG-3 cell line, as well as trophoblastic cells from human placenta. We have assayed the early phase of apoptosis, triggered by serum deprivation, by using Annexin V-propidium iodide (PI) labeling and flow cytometric analysis, as well as the late phase of apoptosis by studying the activation of caspase-3. We have studied the major signalling pathways known to be triggered by the leptin receptor, and we have investigated the relative importance of these pathways in the effect of leptin by using pharmacological inhibitors. We have found that leptin stimulates Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway by promoting JAK-2 and STAT-3 tyrosine phosphorylation. We have also demonstrated the activation of mitogen-activated protein kinase (MAPK) pathway by studying phosphorylation of extracellular-signal regulated kinase (Erk) kinase (MEK) and Erk1/2. PI3K pathway is also triggered by leptin stimulation as assessed by the study of protein kinase B (PKB) phosphorylation. These signaling pathways were confirmed in trophoblastic cells obtained from placenta of healthy donors. The effect of leptin on JEG-3 survival was completely reversed by blocking Erk1/2 activation employing the MEK inhibitor PD98059, whereas it was not affected by PI3K inhibition using wortmannin. These data suggest that the leptin antiapoptotic effect in placenta is mediated by the MAPK pathway.


Endocrinology | 2009

Up-Regulation of Placental Leptin by Human Chorionic Gonadotropin

Julieta Maymó; Antonio Pérez Pérez; Víctor Sánchez-Margalet; José Luis Dueñas; Juan Carlos Calvo; Cecilia L. Varone

Leptin, the 16,000 molecular weight protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta, in which it was found to be expressed. In the present work, we have found that recombinant human chorionic gonadotropin (hCG) added to BeWo choriocarcinoma cell line showed a stimulatory effect on endogenous leptin expression, when analyzed by Western blot. This effect was time and dose dependent. Maximal effect was achieved at hCG 100 IU/ml. Moreover, hCG treatment enhanced leptin promoter activity up to 12.9 times, evaluated by transient transfection with a plasmid construction containing different promoter regions and the reporter gene luciferase. This effect was dose dependent and evidenced with all the promoter regions analyzed, regardless of length. Similar results were obtained with placental explants, thus indicating physiological relevance. Because hCG signal transduction usually involves cAMP signaling, this pathway was analyzed. Contrarily, we found that dibutyryl cAMP counteracted hCG effect on leptin expression. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor cAMP response element binding protein repressed leptin expression. Thereafter we determined that hCG effect could be partially blocked by pharmacologic inhibition of MAPK pathway with 50 microM PD98059 but not by the inhibition of the phosphatidylinositol 3-kinase pathway with 0.1 microm wortmannin. Moreover, hCG treatment promoted MAPK kinase and ERK1/ERK2 phosphorylation in placental cells. Finally, cotransfection with a dominant-negative mutant of MAPK blocked the hCG-mediated activation of leptin expression. In conclusion, we provide some evidence suggesting that hCG induces leptin expression in trophoblastic cells probably involving the MAPK signal transduction pathway.


Biology of Reproduction | 2009

Leptin Stimulates Protein Synthesis-Activating Translation Machinery in Human Trophoblastic Cells

Antonio Pérez-Pérez; Julieta Maymó; Yésica Gambino; José Luis Dueñas; R. Goberna; Cecilia L. Varone; Víctor Sánchez-Margalet

Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [3H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.


Clinical Chemistry and Laboratory Medicine | 2015

Role of leptin in female reproduction

Antonio Pérez-Pérez; Flora Sánchez-Jiménez; Julieta Maymó; José Luis Dueñas; Cecilia L. Varone; Víctor Sánchez-Margalet

Abstract Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.


Placenta | 2012

Elsevier Trophoblast Research Award Lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells − Focus on leptin expression

Yésica Gambino; Julieta Maymó; A. Pérez Pérez; J.C. Calvo; Víctor Sánchez-Margalet; Cecilia L. Varone

The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression.


Endocrinology | 2010

Regulation of placental leptin expression by cyclic adenosine 5'-monophosphate involves cross talk between protein kinase A and mitogen-activated protein kinase signaling pathways.

Julieta Maymó; Antonio Pérez Pérez; José Luis Dueñas; Juan Carlos Calvo; Víctor Sánchez-Margalet; Cecilia L. Varone

Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.


Biochemical and Biophysical Research Communications | 2010

MAPK and PI3K activities are required for leptin stimulation of protein synthesis in human trophoblastic cells

Antonio Pérez-Pérez; Yésica Gambino; Julieta Maymó; R. Goberna; Fernando Fabiani; Cecilia L. Varone; Víctor Sánchez-Margalet

Leptin, the LEP gene product, is produced in placenta where it has been found to be an important autocrine signal for trophoblastic growth during pregnancy. Thus, we have recently described the antiapoptotic and trophic effect of leptin on choriocarcinoma cell line JEG-3, stimulating DNA and protein synthesis. We have also demonstrated the presence of leptin receptor and leptin signaling in normal human trophoblastic cells, activating JAK-STAT, PI3K and MAPK pathways. In the present work we have employed dominant negative forms of MAPK and PKB constructs to find out the signaling pathways that specifically mediates the effect of leptin on protein synthesis. As previously shown, leptin stimulates protein synthesis as assessed by (3)H-leucine incorporation. However, both dominant negative forms of MAPK and PKB inhibited protein synthesis in JEG-3 choriocarcinoma cells. The inhibition of PKB and MAPK activity by transfection with the dominant negative kinases prevented the leptin stimulation of p70 S6K, which is known to be an important kinase in the regulation of protein synthesis. Moreover, leptin stimulation of phosphorylation of EIF4EBP1 and EIF4E, which allows the initiation of translation was also prevented by MAPK and PI3K dominant negative constructs. Therefore, these results demonstrate that both PI3K and MAPK are necessary to observe the effect of leptin signaling that mediates protein synthesis in choriocarcinoma cells JEG-3.


Hormone and Metabolic Research | 2013

Activated Translation Signaling in Placenta from Pregnant Women with Gestational Diabetes Mellitus: Possible Role of Leptin

Antonio Pérez-Pérez; Julieta Maymó; Yésica Gambino; Pilar Guadix; José Luis Dueñas; Cecilia Laura Varone; Víctor Sánchez-Margalet

Placentas from gestational diabetes (GDM) suffer from structural and functional changes including overgrowth. That is why we aimed to study [³H]-leucine incorporation into protein in addition to translation signaling in placenta from GDM. Thus, we investigated the expression of leptin and leptin receptor (LEPR), as well as the activation state of signaling proteins regulating protein synthesis, such as mTOR, S6 Kinase, EIF4E-BP1, EIF4E, and eEF2 by measuring protein phosphorylation by immunoblot. [³H]-Leucine incorporation into protein also was determined in trophoblastic placenta explants from GDM and control pregnancy. We found that leptin and LEPR expression are increased in placentas from GDM and the translation machinery activity as well as [³H]-leucine incorporation into protein were higher in placentas from GDM compared with placentas from control pregnancy. In conclusion, protein synthesis rate is increased in placenta from GDM patients, and this may be due, at least in part, by the activation of translation signaling. The increased expression of leptin and LEPR may contribute to these effects. These results may provide a possible mechanism for the previously observed increase in placenta growth in GDM.

Collaboration


Dive into the Julieta Maymó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia L. Varone

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yésica Gambino

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Ayelén Toro

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Malena Schanton

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Carlos Calvo

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Riedel

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge