Juliette T. J. Lecomte
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juliette T. J. Lecomte.
Journal of Molecular Evolution | 2006
David A. Vuletich; Juliette T. J. Lecomte
Truncated hemoglobins (trHbs) are heme proteins found in bacteria, plants, and unicellular eukaryotes. They are distantly related to vertebrate hemoglobins and are typically shorter than these by 20–40 residues. The multiple amino acid deletions, insertions, and replacements result in distinctive alterations of the canonical globin fold and a wide range of chemical properties. An early phylogenetic analysis categorized trHbs into three groups, I (trHbN), II (trHbO), and III (trHbP). Here, we revisit this analysis with 111 trHbs. We find that trHbs are orthologous within each group and paralogous across the groups. Group I globins form the most disparate set and separate into two divergent subgroups. Group II is comparatively homogeneous, whereas Group III displays the highest level of overall conservation. In Group I and Group II globins, for which some ligand binding and structural data are available, an improved description of probable protein-ligand interactions is achieved. Other conservation trends are either confirmed (essential glycines in loops), refined (lining of ligand access tunnel), or newly identified (helix start signal). The Group III globins, so far uncharacterized, exhibit recognizable heme cavity residues while lacking some of the residues thought to be important to the trHb fold. An analysis of the phylogenetic trees of each group provides a plausible scenario for the emergence of trHbs, by which the Group II trHb gene was the original gene, and the Group I trHb and Group III trHb genes were obtained via duplication and transfer events.
Biophysical Journal | 2000
Yung-Hsiang Kao; Carolyn A. Fitch; Shibani Bhattacharya; Christopher J. Sarkisian; Juliette T. J. Lecomte; E Bertrand García-Moreno
The salt dependence of histidine pK(a) values in sperm whale and horse myoglobin and in histidine-containing peptides was measured by (1)H-NMR spectroscopy. Structure-based pK(a) calculations were performed with continuum methods to test their ability to capture the effects of solution conditions on pK(a) values. The measured pK(a) of most histidines, whether in the protein or in model compounds, increased by 0.3 pH units or more between 0.02 M and 1.5 M NaCl. In myoglobin two histidines (His(48) and His(36)) exhibited a shallower dependence than the average, and one (His(113)) showed a steeper dependence. The (1)H-NMR data suggested that the salt dependence of histidine pK(a) values in the protein was determined primarily by the preferential stabilization of the charged form of histidine with increasing salt concentrations rather than by screening of electrostatic interactions. The magnitude and salt dependence of interactions between ionizable groups were exaggerated in pK(a) calculations with the finite-difference Poisson-Boltzmann method applied to a static structure, even when the protein interior was treated with arbitrarily high dielectric constants. Improvements in continuum methods for calculating salt effects on pK(a) values will require explicit consideration of the salt dependence of model compound pK(a) values used for reference in the calculations.
Protein Science | 2009
Christina M. Kraemer-Pecore; Juliette T. J. Lecomte; John R. Desjarlais
We have used a sequence prediction algorithm and a novel sampling method to design protein sequences for the WW domain, a small β‐sheet motif. The procedure, referred to as SPANS, designs sequences to be compatible with an ensemble of closely related polypeptide backbones, mimicking the inherent flexibility of proteins. Two designed sequences (termed SPANS‐WW1 and SPANS‐WW2), using only naturally occurring l‐amino acids, were selected for study and the corresponding polypeptides were prepared in Escherichia coli. Circular dichroism data suggested that both purified polypeptides adopted secondary structure features related to those of the target without the aid of disulfide bridges or bound cofactors. The structure exhibited by SPANS‐WW2 melted cooperatively by raising the temperature of the solution. Further analysis of this polypeptide by proton nuclear magnetic resonance spectroscopy demonstrated that at 5°C, it folds into a structure closely resembling a natural WW domain. This achievement constitutes one of a small number of successful de novo protein designs through fully automated computational methods and highlights the feasibility of including backbone flexibility in the design strategy.
Journal of Molecular Biology | 2002
Christopher J. Falzone; B. Christie Vu; Nancy L. Scott; Juliette T. J. Lecomte
The product of the cyanobacterium Synechocystis sp. PCC 6803 gene slr2097 is a 123 amino acid polypeptide chain belonging to the truncated hemoglobin family. Recombinant, ferric heme-reconstituted Synechocystis sp. PCC 6803 hemoglobin displays bis-histidine coordination of the iron ion. In addition, this protein is capable of covalently attaching a reactive histidine to the heme 2-vinyl group. The structure of the protein in the low-spin ferric state with intact vinyl substituents was solved by NMR methods. It was found that the structure differs from that of known truncated hemoglobins primarily in the orientation of the E helix, which carries His46 (E10) as the distal ligand to the iron; the length and orientation of the F helix, which carries His70 (F8) as the proximal ligand to the iron; and the H-helix, which carries His117 (H16), the reactive histidine. Regions of enhanced flexibility include the short A helix, the loop connecting the E and F helices, and the last seven residues at the carboxy end. The structural data allowed for the rationalization of physical properties of the cyanobacterial protein, such as fast on-rate for small ligand binding, unstable apoprotein fold, and cross-linking ability. Comparison to the truncated hemoglobin from the green alga Chlamydomonas eugametos also suggested how the endogenous hexacoordination affected the structure.
Tetrahedron Letters | 1992
Christopher J. Falzone; Alan J. Benesi; Juliette T. J. Lecomte
Abstract The 1 H and 13 C NMR spectra of taxol in methylene chloride were analyzed using two-dimensional methods. 13 C chemical shift assignments were made based on inverse-detected two-dimensional NMR experiments and are reported. The NOESY data collected in this solvent suggest that the structure in solution is similar to the X-ray structure of the taxol analogue taxotere.
Biochemistry | 2010
Nancy L. Scott; Yu Xu; Gaozhong Shen; David A. Vuletich; Christopher J. Falzone; Zhongkui Li; Marcus Ludwig; Matthew P. Pond; Matthew R. Preimesberger; Donald A. Bryant; Juliette T. J. Lecomte
Cyanobacterium Synechococcus sp. PCC 7002 contains a single gene (glbN) coding for GlbN, a protein of the 2/2 hemoglobin lineage. The precise function of GlbN is not known, but comparison to similar 2/2 hemoglobins suggests that reversible dioxygen binding is not its main activity. In this report, the results of in vitro and in vivo experiments probing the role of GlbN are presented. Transcription profiling indicated that glbN is not strongly regulated under any of a large number of growth conditions and that the gene is probably constitutively expressed. High levels of nitrate, used as the sole source of nitrogen, and exposure to nitric oxide were tolerated better by the wild-type strain than a glbN null mutant, whereas overproduction of GlbN in the null mutant background restored the wild-type growth. The cellular contents of reactive oxygen/nitrogen species were elevated in the null mutant under all conditions and were highest under NO challenge or in the presence of high nitrate concentrations. GlbN overproduction attenuated these contents significantly under the latter conditions. The analysis of cell extracts revealed that the heme of GlbN was covalently bound to overproduced GlbN apoprotein in cells grown under microoxic conditions. A peroxidase assay showed that purified GlbN does not possess significant hydrogen peroxidase activity. It was concluded that GlbN protects cells from reactive nitrogen species that could be encountered naturally during growth on nitrate or under denitrifying conditions. The solution structure of covalently modified GlbN was determined and used to rationalize some of its chemical properties.
Proteins | 1996
Juliette T. J. Lecomte; Yung-Hsiang Kao; Melanie J. Cocco
Proton nuclear magnetic resonance spectroscopy was applied to sperm whale apomyoglobin to describe the conformation adopted by the protein under native conditions. The study focused on the A‐B‐G‐H interface, a region known to form a compact subdomain in the apoprotein (Hughson and Baldwin, Biochemistry 28:4415–4422, 1989). Two histidine residues located in this subdomain, His24 and His119, interact and are thought to play a role in the acid denaturation process (Barrick et al., J. Mol. Biol. 237:588–601, 1994). A stable double mutant at these positions (His24Va1/His119Phe sperm whale apomyoglobin) was compared with wild‐type apomyoglobin. The amino acid replacements result in chemical shift perturbations near the mutations, in particular in the AB interhelical region, and in a deceleration of backbone amide hydrogen exchange in the B helix from position 27 to position 33. The double mutant data were used to expand and confirm the wild‐type spectral analysis. Signals from the D helix were identified that demonstrate the formation of holoprotein‐like structure. The assigned wild‐type nuclear Overhauser effects, although in small number, were sufficient to construct a model of the compact subdomain of the apoprotein. This was achieved by using the structure of the holoprotein and restraining it with the geometrical information on the apoprotein in a simulated annealing procedure. The experimental restraints define a low‐resolution model of the A‐B‐G‐H interface in apomyoglobin.
Biophysical Journal | 1997
Shibani Bhattacharya; S. F. Sukits; K. L. Maclaughlin; Juliette T. J. Lecomte
1H-15N HMQC spectra were collected on 15N-labeled sperm whale myoglobin (Mb) to determine the tautomeric state of its histidines in the neutral form. By analyzing metaquoMb and metcyanoMb data sets collected at various pH values, cross-peaks were assigned to the imidazole rings and their patterns interpreted. Of the nine histidines not interacting with the heme in sperm whale myoglobin, it was found that seven (His-12, His-48, His-81, His-82, His-113, His-116, and His-119) are predominantly in the N epsilon2H form with varying degrees of contribution from the Ndelta1 H form. The eighth, His-24, is in the Ndelta1H state as expected from the solid state structure. 13C correlation spectra were collected to probe the state of the ninth residue (His-36). Tentative interpretation of the data through comparison with horse Mb suggested that this ring is predominantly in the Ndelta1H state. In addition, signals were observed from the histidines associated with the heme (His-64, His-93, and His-97) in the 1H-15N HMQC spectra of the metcyano form. In several cases, the tautomeric state of the imidazole ring could not be derived from inspection of the solid state structure. It was noted that hydrogen bonding of the ring was not unambiguously reflected in the nitrogen chemical shift. With the experimentally determined tautomeric state composition in solution, it will be possible to broaden the scope of other studies focused on the electrostatic contribution of histidines to the thermodynamic properties of myoglobin.
Journal of Biological Inorganic Chemistry | 2004
B. Christie Vu; David A. Vuletich; Syna A. Kuriakose; Christopher J. Falzone; Juliette T. J. Lecomte
The recombinant product of the hemoglobin gene of the cyanobacterium Synechocystis sp. PCC 6803 forms spontaneously a covalent bond linking one of the heme vinyl groups to a histidine located in the C-terminal helix (His117, or H16). The present report describes the 1H, 15N, and 13C NMR spectroscopy experiments demonstrating that the recombinant hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002, a protein sharing 59% identity with Synechocystis hemoglobin, undergoes the same facile heme adduct formation. The observation that the extraordinary linkage is not unique to Synechocystis hemoglobin suggests that it constitutes a noteworthy feature of hemoglobin in non-N2-fixing cyanobacteria, along with the previously documented bis-histidine coordination of the heme iron. A qualitative analysis of the hyperfine chemical shifts of the ferric proteins indicated that the cross-link had modest repercussions on axial histidine ligation and heme electronic structure. In Synechocystis hemoglobin, the unreacted His117 imidazole had a normal pKa whereas the protonation of the modified residue took place at lower pH. Optical experiments revealed that the cross-link stabilized the protein with respect to thermal and acid denaturation. Replacement of His117 with an alanine yielded a species inert to adduct formation, but inspection of the heme chemical shifts and ligand binding properties of the variant identified position 117 as important in seating the cofactor in its site and modifying the dynamic properties of the protein. A role for bis-histidine coordination and covalent adduct formation in heme retention is proposed.
Biochimica et Biophysica Acta | 1985
Juliette T. J. Lecomte; Robert D. Johnson; Gerd N. La Mar
Freshly reconstituted sperm whale myoglobin is a mixture of two components distinguishable by proton nuclear magnetic resonance. The two species are interconvertible and the equilibrium composition is about 90% of one form, the form studied by X-ray methods. We have used the nuclear Overhauser effect to characterize the other (minor) component in its metcyano complex. Whereas in the major form there is dipolar contact between residue 99 and the heme pyrrole ring III, in the minor form the same residue is in contact with pyrrole IV, related to ring III by a 180 degrees rotation about the alpha-gamma meso axis. This interaction proves the validity of the heme rotational disorder proposition and confirms that the apoprotein does not discriminate between the two sides of the heme in the rapid insertion process. It is proposed that the differences in nuclear Overhauser effect between the protein matrix and the heme moiety can be used to define qualitatively the structural consequences of this heterogeneity. The altered heme-protein contacts could be related to the enhanced oxygen affinity in the minor form.