Julio A. Rodríguez-Manzo
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julio A. Rodríguez-Manzo.
Science | 2006
Litao Sun; Florian Banhart; Arkady V. Krasheninnikov; Julio A. Rodríguez-Manzo; Mauricio Terrones; Pulickel M. Ajayan
Closed-shell carbon nanostructures, such as carbon onions, have been shown to act as self-contracting high-pressure cells under electron irradiation. We report that controlled irradiation of multiwalled carbon nanotubes can cause large pressure buildup within the nanotube cores that can plastically deform, extrude, and break solid materials that are encapsulated inside the core. We further showed by atomistic simulations that the internal pressure inside nanotubes can reach values higher than 40 gigapascals. Nanotubes can thus be used as robust nanoscale jigs for extruding and deforming hard nanomaterials and for modifying their properties, as well as templates for the study of individual nanometer-sized crystals under high pressure.
ACS Nano | 2010
Julio A. Rodríguez-Manzo; Ovidiu Cretu; Florian Banhart
Lattice defects in carbon nanotubes and graphene are created by focusing an electron beam in a scanning transmission electron microscope onto a 0.1 nm spot on the objects. Metal atoms migrating on the graphenic surfaces are observed to be trapped by these defects. Depending on the size of the defect, single metal atoms or clusters of several atoms can be localized in or on nanotubes or graphene layers. Subsequent escape of the metal atoms from the trapping centers gives information about the bonding between the metal atom and the defect. The process of trapping and detrapping is studied in a temperature range of 20-670 degrees C. The technique allows one to place metal atoms with almost atomic precision in graphenic structures and to create a predefined pattern of foreign atoms in graphene or carbon nanotubes.
Nature Nanotechnology | 2007
Julio A. Rodríguez-Manzo; Mauricio Terrones; Humberto Terrones; Harold W. Kroto; Litao Sun; Florian Banhart
The synthesis of carbon nanotubes (CNTs) of desired chiralities and diameters is one of the most important challenges in nanotube science and achieving such selectivity may require a detailed understanding of their growth mechanism. We report the formation of CNTs in an entirely condensed phase process that allows us, for the first time, to monitor the nucleation of a nanotube on the spherical surface of a metal particle. When multiwalled CNTs containing metal particle cores are irradiated with an electron beam, carbon from graphitic shells surrounding the metal particles is ingested into the body of the particle and subsequently emerges as single-walled nanotubes (SWNTs) or multiwalled nanotubes (MWNTs) inside the host nanotubes. These observations, at atomic resolution in an electron microscope, show that there is direct bonding between the tubes and the metal surface from which the tubes sprout and can be readily explained by bulk diffusion of carbon through the body of catalytic particles, with no evidence of surface diffusion.
ACS Nano | 2013
Kimberly Venta; Matthew Puster; Julio A. Rodríguez-Manzo; Adrian Balan; Jacob K. Rosenstein; Kenneth L. Shepard; Marija Drndic
In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Here we show that small silicon nitride nanopores (0.8- to 2-nm diameter in 5- to 8-nm-thick membranes) can resolve differences between ionic current signals produced by short (30 base) ssDNA homopolymers (poly(dA), poly(dC), poly(dT)), when combined with measurement electronics that allow a signal-to-noise ratio of better than 10 to be achieved at 1-MHz bandwidth. While identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels, homopolymer differentiation represents an important milestone in the development of solid-state nanopores.
Nano Letters | 2009
Julio A. Rodríguez-Manzo; Florian Banhart
The focused electron beam of an aberration-corrected scanning transmission electron microscope is used to create individual vacancies in predefined positions of carbon nanotubes. Vacancies in single-wall tubes are unstable and cause an immediate reconstruction of the lattice between 20 and 700 degrees C. In double-wall tubes, vacancies are stable and observable up to at least 235 degrees C, whereas above 480 degrees C a relaxation of the lattice occurs.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Julio A. Rodríguez-Manzo; Florian Banhart; Mauricio Terrones; Humberto Terrones; Nicole Grobert; Pulickel M. Ajayan; Bobby G. Sumpter; Vincent Meunier; Ming-Sheng Wang; Yoshio Bando; Dmitri Golberg
We report the controlled formation and characterization of heterojunctions between carbon nanotubes and different metal nanocrystals (Fe, Co, Ni, and FeCo). The heterojunctions are formed from metal-filled multiwall carbon nanotubes (MWNTs) via intense electron beam irradiation at temperatures in the range of 450–700 °C and observed in situ in a transmission electron microscope. Under irradiation, the segregation of metal and carbon atoms occurs, leading to the formation of heterojunctions between metal and graphite. Metallic conductivity of the metal–nanotube junctions was found by using in situ transport measurements in an electron microscope. Density functional calculations show that these structures are mechanically strong, the bonding at the interface is covalent, and the electronic states at and around the Fermi level are delocalized across the entire system. These properties are essential for the application of such heterojunctions as contacts in electronic devices and vital for the fabrication of robust nanotube–metal composite materials.
ACS Nano | 2011
Julio A. Rodríguez-Manzo; Cuong Pham-Huu; Florian Banhart
Single and few-layer graphene is grown by a solid-state transformation of amorphous carbon on a catalytically active metal. The process is carried out and monitored in situ in an electron microscope. It is observed that an amorphous carbon film is taken up by Fe, Co, or Ni crystals at temperatures above 600 °C. The nucleation and growth of graphene layers on the metal surfaces happen after the amorphous carbon film has been dissolved. It is shown that the transformation of the energetically less favorable amorphous carbon to the more favorable phase of graphene occurs by diffusion of carbon atoms through the catalytically active metal.
ACS Nano | 2013
Matthew Puster; Julio A. Rodríguez-Manzo; Adrian Balan; Marija Drndic
Graphene-based nanopore devices are promising candidates for next-generation DNA sequencing. Here we fabricated graphene nanoribbon-nanopore (GNR-NP) sensors for DNA detection. Nanopores with diameters in the range 2-10 nm were formed at the edge or in the center of graphene nanoribbons (GNRs), with widths between 20 and 250 nm and lengths of 600 nm, on 40 nm thick silicon nitride (SiN(x)) membranes. GNR conductance was monitored in situ during electron irradiation-induced nanopore formation inside a transmission electron microscope (TEM) operating at 200 kV. We show that GNR resistance increases linearly with electron dose and that GNR conductance and mobility decrease by a factor of 10 or more when GNRs are imaged at relatively high magnification with a broad beam prior to making a nanopore. By operating the TEM in scanning TEM (STEM) mode, in which the position of the converged electron beam can be controlled with high spatial precision via automated feedback, we were able to prevent electron beam-induced damage and make nanopores in highly conducting GNR sensors. This method minimizes the exposure of the GNRs to the beam before and during nanopore formation. The resulting GNRs with unchanged resistances after nanopore formation can sustain microampere currents at low voltages (∼50 mV) in buffered electrolyte solution and exhibit high sensitivity, with a large relative change of resistance upon changes of gate voltage, similar to pristine GNRs without nanopores.
ACS Nano | 2009
Ming-Sheng Wang; Yoshio Bando; Julio A. Rodríguez-Manzo; Florian Banhart; Dmitri Golberg
New methods of processing multiwall carbon nanotubes (CNTs) are demonstrated in experiments in the transmission electron microscope (TEM). These include precisely controllable cutting, repairing, and interconnecting of different CNTs with the assistance of an encapsulated Co particle. All processes involve the interactions between the metal and graphitic shells that are driven by combined electrical biasing [using a scanning-tunneling microscope (STM)-TEM setup] of the CNT and focused electron-beam irradiation of a Co-containing region. In particular, we present two CNT soldering processes, that is, Co-joined and Co-catalytic connections. The former process uses a Co particle as the central node to which two CNTs are covalently attached on the opposite sides, and the latter makes use of the segregation of new graphitic shells from the metal at the connecting site, resulting in CNT plumbing. We compare the mechanical robustness of both connection types by direct force measurements in the TEM using an integrated atomic force microscope (AFM) setup. They reveal a tensile strength of 4.2 and 31 GPa, respectively, thus demonstrating the superiority of the Co-catalytic connection whose strength is already comparable to standard CNTs. In addition, all connected nanotubes show metallic conduction. The developed methods could be of particular importance in future nanoelectronic device technology.
ACS Nano | 2015
Julio A. Rodríguez-Manzo; Matthew Puster; Adrien Nicolaï; Vincent Meunier; Marija Drndic
Solid-state nanopores are single-molecule sensors that detect changes in ionic conductance (ΔG) when individual molecules pass through them. Producing high signal-to-noise ratio for the measurement of molecular structure in applications such as DNA sequencing requires low noise and large ΔG. The latter is achieved by reducing the nanopore diameter and membrane thickness. While the minimum diameter is limited by the molecule size, the membrane thickness is constrained by material properties. We use molecular dynamics simulations to determine the theoretical thickness limit of amorphous Si membranes to be ∼1 nm, and we designed an electron-irradiation-based thinning method to reach that limit and drill nanopores in the thinned regions. Double-stranded DNA translocations through these nanopores (down to 1.4 nm in thickness and 2.5 nm in diameter) provide the intrinsic ionic conductance detection limit in Si-based nanopores. In this regime, where the access resistance is comparable to the nanopore resistance, we observe the appearance of two conductance levels during molecule translocation. Considering the overall performance of Si-based nanopores, our work highlights their potential as a leading material for sequencing applications.