Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julio C. Valencia is active.

Publication


Featured researches published by Julio C. Valencia.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A model for melanosome biogenesis based on the purification and analysis of early melanosomes

Tsuneto Kushimoto; Venkatesha Basrur; Julio C. Valencia; Jun Matsunaga; Wilfred D. Vieira; Victor J. Ferrans; Jacqueline Muller; Ettore Appella; Vincent J. Hearing

Melanosome biogenesis and function were studied after purification of early stage melanosomes and characterization of specific proteins sorted to that organelle. Melanosomes were isolated from highly pigmented human MNT1 melanoma cells after disruption and initial separation by sucrose density gradient centrifugation. Low-density sucrose fractions were found by electron microscopy to be enriched in stage I and stage II melanosomes, and these fractions were further separated and purified by free flow electrophoresis. Tyrosinase and dopachrome tautomerase (DCT) activities were found exclusively in stage II melanosomes, even though DCT (and to some extent tyrosinase) proteins were sorted to stage I melanosomes. Western immunoblotting revealed that these catalytic proteins, as well as TYRP1, MART1, and GP100, were cleaved and inactivated in stage I melanosomes. Proteolytic cleavage was critical for the refolding of GP100 within the melanosomal milieu, and subsequent reorganization of amorphous stage I melanosomes into fibrillar, ovoid, and highly organized stage II melanosomes appears to stabilize the catalytic functions of melanosomal enzymes and allows melanin biosynthesis to begin. These results provide a better understanding of the structural features seen during melanosome biogenesis, and they yield further clues as to the physiological regulation of pigmentation.


Journal of Cell Science | 2003

Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4.

Gertrude-E. Costin; Julio C. Valencia; Wilfred D. Vieira; M. Lynn Lamoreux; Vincent J. Hearing

Oculocutaneous albinism (OCA) type 4 is a newly identified human autosomal recessive hypopigmentary disorder that disrupts pigmentation in the skin, hair and eyes. Three other forms of OCA have been previously characterized, each resulting from the aberrant processing and/or sorting of tyrosinase, the enzyme critical to pigment production in mammals. The disruption of tyrosinase trafficking occurs at the level of the endoplasmic reticulum (ER) in OCA1 and OCA3, but at the post-Golgi level in OCA2. The gene responsible for OCA4 is the human homologue of the mouse underwhite (uw) gene, which encodes the membrane-associated transporter protein (MATP). To characterize OCA4, we investigated the processing and sorting of melanogenic proteins in primary melanocytes derived from uw/uw mice and from wild-type mice. OCA4 melanocytes were found to be constantly secreted into the medium dark vesicles that contain tyrosinase and two other melanogenic enzymes, Tyrp1 (tyrosinase-related protein 1) and Dct (DOPAchrome tautomerase); this secretory process is not seen in wild-type melanocytes. Although tyrosinase was synthesized at comparable rates in wild-type and in uw-mutant melanocytes, tyrosinase activity in uw-mutant melanocytes was only about 20% of that found in wild-type melanocytes, and was enriched only about threefold in melanosomes compared with the ninefold enrichment in wild-type melanocytes. OCA4 melanocytes showed a marked difference from wild-type melanocytes in that tyrosinase was abnormally secreted from the cells, a process similar to that seen in OCA2 melanocytes, which results from a mutation of the pink-eyed dilution (P) gene. The P protein and MATP have 12 transmembrane regions and are predicted to function as transporters. Ultrastructural analysis shows that the vesicles secreted from OCA4 melanocytes are mostly early stage melanosomes. Taken together, our results show that in OCA4 melanocytes, tyrosinase processing and intracellular trafficking to the melanosome is disrupted and the enzyme is abnormally secreted from the cells in immature melanosomes, which disrupts the normal maturation process of those organelles. This mechanism explains the hypopigmentary phenotype of these cells and provides new insights into the involvement of transporters in the normal physiology of melanocytes.


The FASEB Journal | 2001

Oculocutaneous albinism types 1 and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wild-type proteins

Kazutomo Toyofuku; Ikuo Wada; Julio C. Valencia; Tsuneto Kushimoto; Victor J. Ferrans; Vincent J. Hearing

Various types of oculocutaneous albinism (OCA) are associated with reduced pigmentation in the skin, hair, and eyes that results from mutations in genes involved in melanin synthesis. Immortal mouse melanocyte lines (melan‐a, melan‐b, and melan‐c) provide opportune models with which to investigate the etiology of two different types of OCA(types I and III), which arise from mutations in Tyr and Tyrpl, respectively. We compared intracellular processing, sorting, and degradation of tyrosinase and Tyrp1, and the effects on their catalytic function and melanin synthesis, in these wild‐type and mutant melanocytes. A mutation in either Tyr or Tyrp1 increased the time of association of tyrosinase and Tyrpl with calnexin and Bip, which in turn resulted in the retention of these mutant products in the ER. A mutation in either gene selectively enhanced the duration and efficiency of chaperone interactions (even with the wild‐type protein in the mutant melanocytes) and markedly slowed their transport to melanosomes. These results show that OCA1 and OCA3 are (in some cases, at least) ER retention diseases wherein a mutation in one melano‐genic protein affects the maturation and stability of the other in the melanogenic pathway.—Toyofuku, K., Wada, I., Valencia, J. C., Kushimoto, T., Ferrans, V. J., Hearing, V. J. Oculocutaneous albinism types 1 and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wild‐type proteins. FASEB J. 15, 2149–2161 (2001)


Pigment Cell & Melanoma Research | 2009

Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma

Kevin G. Chen; Julio C. Valencia; Jean-Pierre Gillet; Vincent J. Hearing; Michael M. Gottesman

Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more ATP‐binding cassette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC‐M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC‐M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma.


Proceedings of the National Academy of Sciences of the United States of America | 2007

SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation

Thierry Passeron; Julio C. Valencia; Corine Bertolotto; Toshihiko Hoashi; Elodie Le Pape; Kaoruko Takahashi; Robert Ballotti; Vincent J. Hearing

SOX (SRY type HMG box) proteins are transcription factors that are predominantly known for their roles during development. During melanocyte development from the neural crest, SOX10 regulates microphthalmia-associated transcription factor, which controls a set of genes critical for pigment cell development and pigmentation, including dopachrome tautomerase and tyrosinase. We report here that another SOX factor, SOX9, is expressed by melanocytes in neonatal and adult human skin and is up-regulated by UVB exposure. We demonstrate that this regulation is mediated by cAMP and protein kinase. We also show that agouti signal protein, a secreted factor known to decrease pigmentation, down-regulates SOX9 expression. In adult and neonatal melanocytes, SOX9 regulates microphthalmia-associated transcription factor, dopachrome tautomerase, and tyrosinase promoters, leading to an increase in the expression of these key melanogenic proteins and finally to a stimulation of pigmentation. SOX9 completes the complex and tightly regulated process leading to the production of melanin by acting at a very upstream level. This role of SOX9 in pigmentation emphasizes the poorly understood impact of SOX proteins in adult tissues.


Journal of Clinical Investigation | 2009

Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid.

Thierry Passeron; Julio C. Valencia; Takeshi Namiki; Wilfred D. Vieira; Hélène Passeron; Yoshinori Miyamura; Vincent J. Hearing

Treatments for primary and metastatic melanomas are rarely effective. Even therapeutics such as retinoic acid (RA) that are successfully used to treat several other forms of cancer are ineffective. Recent evidence indicates that the antiproliferative effects of RA are mediated by the transcription factor SOX9 in human cancer cell lines. As we have previously shown that SOX9 is expressed in normal melanocytes, here we investigated SOX9 expression and function in human melanomas. Although SOX9 was expressed in normal human skin, it was increasingly downregulated as melanocytes progressed to the premalignant and then the malignant and metastatic states. Overexpression of SOX9 in both human and mouse melanoma cell lines induced cell cycle arrest by increasing p21 transcription and restored sensitivity to RA by downregulating expression of PRAME, a melanoma antigen. Furthermore, SOX9 overexpression in melanoma cell lines inhibited tumorigenicity both in mice and in a human ex vivo model of melanoma. Treatment of melanoma cell lines with PGD2 increased SOX9 expression and restored sensitivity to RA. Thus, combined treatment with PGD2 and RA substantially decreased tumor growth in human ex vivo and mouse in vivo models of melanoma. The results of our experiments targeting SOX9 provide insight into the pathophysiology of melanoma. Further, the effects of SOX9 on melanoma cell proliferation and RA sensitivity suggest the encouraging possibility of a noncytotoxic approach to the treatment of melanoma.


Journal of Biological Chemistry | 2004

Epitope Mapping of the Melanosomal Matrix Protein gp100 (PMEL17) RAPID PROCESSING IN THE ENDOPLASMIC RETICULUM AND GLYCOSYLATION IN THE EARLY GOLGI COMPARTMENT

Ken-ichi Yasumoto; Hidenori Watabe; Julio C. Valencia; Tsuneto Kushimoto; Takeshi Kobayashi; Ettore Appella; Vincent J. Hearing

Melanosomes, specific organelles produced only by melanocytes, undergo a unique maturation process that involves their transition form amorphous rounded vesicles to fibrillar ellipsoid organelles, during which they move from the perinuclear to the distal areas of the cells. This depends upon the trafficking and processing of gp100 (also known as Pmel17 and the silver protein), a protein of great interest, because it elicits immune responses in melanoma patients but in which specific function(s) remains elusive. In this study, we have used biochemical and immunochemical approaches to more critically assess the synthesis, processing, glycosylation, and trafficking of gp100. We now report that gp100 is processed and sorted in a manner distinct from other melanosomal proteins (such as tyrosinase, Tyrp1 and Dct) and is predominantly delivered directly to immature melanosomes following its rapid processing in the endoplasmic reticulum and cis-Golgi. Following its arrival, gp100 is cleaved at the amino and at the carboxyl termini in a series of specific steps that result in the reorganization of immature melanosomes to the fibrillar mature melanosomes. Once this structural reorganization occurs, melanogenic enzymes begin to be targeted to the melanosomes, which are then competent to synthesize melanin pigment.


Journal of Cell Science | 2006

Sorting of Pmel17 to melanosomes through the plasma membrane by AP1 and AP2: evidence for the polarized nature of melanocytes

Julio C. Valencia; Hidenori Watabe; An Chi; Francois Rouzaud; Kevin G. Chen; Wilfred D. Vieira; Kaoruko Takahashi; Yuji Yamaguchi; Werner Berens; Kunio Nagashima; Jeffrey Shabanowitz; Donald F. Hunt; Ettore Appella; Vincent J. Hearing

Adaptor proteins (AP) play important roles in the sorting of proteins from the trans-Golgi network, but how they function in the sorting of various melanosome-specific proteins such as Pmel17, an essential structural component of melanosomes, in melanocytes is unknown. We characterized the processing and trafficking of Pmel17 via adaptor protein complexes within melanocytic cells. Proteomics analysis detected Pmel17, AP1 and AP2, but not AP3 or AP4 in early melanosomes. Real-time PCR, immunolabeling and tissue in-situ hybridization confirmed the coexpression of AP1 isoforms μ1A and μ1B (expressed only in polarized cells) in melanocytes and keratinocytes, but expression of μ1B is missing in some melanoma cell lines. Transfection with AP1 isoforms (μ1A or μ1B) showed two distinct distribution patterns that involved Pmel17, and only μ1B was able to restore the sorting of Pmel17 to the plasma membrane in cells lacking μ1B expression. Finally, we established that expression of μ1B is regulated physiologically in melanocytes by UV radiation or DKK1. These results show that Pmel17 is sorted to melanosomes by various intracellular routes, directly or indirectly through the plasma membrane, and the presence of basolateral elements in melanocytes suggests their polarized nature.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Microarray analysis sheds light on the dedifferentiating role of agouti signal protein in murine melanocytes via the Mc1r

Elodie Le Pape; Thierry Passeron; Alessio Giubellino; Julio C. Valencia; Rainer Wolber; Vincent J. Hearing

The melanocortin-1 receptor (MC1R) is a key regulator of pigmentation in mammals and is tightly linked to an increased risk of skin cancers, including melanoma, in humans. Physiologically activated by α-melanocyte stimulating hormone (αMSH), MC1R function can be antagonized by a secreted factor, agouti signal protein (ASP), which is responsible for the lighter phenotypes in mammals (including humans), and is also associated with increased risk of skin cancer. It is therefore of great interest to characterize the molecular effects elicited by those MC1R ligands. In this study, we determined the gene expression profiles of murine melan-a melanocytes treated with ASP or αMSH over a 4-day time course using genome-wide oligonucleotide microarrays. As expected, there were significant reductions in expression of numerous melanogenic proteins elicited by ASP, which correlates with its inhibition of pigmentation. ASP also unexpectedly modulated the expression of genes involved in various other cellular pathways, including glutathione synthesis and redox metabolism. Many genes up-regulated by ASP are involved in morphogenesis (especially in nervous system development), cell adhesion, and extracellular matrix-receptor interactions. Concomitantly, ASP enhanced the migratory potential and the invasiveness of melanocytic cells in vitro. These results demonstrate the role of ASP in the dedifferentiation of melanocytes, identify pigment-related genes targeted by ASP and by αMSH, and provide insights into the pleiotropic molecular effects of MC1R signaling that may function during development and may affect skin cancer risk.


Biochemical Journal | 2005

Mutations in dopachrome tautomerase (Dct) affect eumelanin/pheomelanin synthesis, but do not affect intracellular trafficking of the mutant protein.

Gertrude-E. Costin; Julio C. Valencia; Kazumasa Wakamatsu; Shosuke Ito; Francisco Solano; Adina L. Milac; Wilfred D. Vieira; Yuji Yamaguchi; Francois Rouzaud; Andrei-J. Petrescu; M. Lynn Lamoreux; Vincent J. Hearing

Dopachrome tautomerase (Dct) is a type I membrane protein and an important regulatory enzyme that plays a pivotal role in the biosynthesis of melanin and in the rapid metabolism of its toxic intermediates. Dct-mutant melanocytes carrying the slaty or slaty light mutations were derived from the skin of newborn congenic C57BL/6J non-agouti black mice and were used to study the effect(s) of these mutations on the intracellular trafficking of Dct and on the pigmentation of the cells. Dct activity is 3-fold lower in slaty cells compared with non-agouti black melanocytes, whereas slaty light melanocytes have a surprisingly 28-fold lower Dct activity. Homology modelling of the active site of Dct suggests that the slaty mutation [R194Q (Arg194-->Gln)] is located in the active site and may alter the ability of the enzyme to transform the substrate. Transmembrane prediction methods indicate that the slaty light mutation [G486R (Gly486-->Arg)] may result in the sliding of the transmembrane domain towards the N-terminus, thus interfering with Dct function. Chemical analysis showed that both Dct mutations increase pheomelanin and reduce eumelanin produced by melanocytes in culture. Thus the enzymatic activity of Dct may play a role in determining whether the eumelanin or pheomelanin pathway is preferred for pigment biosynthesis.

Collaboration


Dive into the Julio C. Valencia's collaboration.

Top Co-Authors

Avatar

Vincent J. Hearing

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Francois Rouzaud

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wilfred D. Vieira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gertrude-E. Costin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Victor J. Ferrans

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hidenori Watabe

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kevin G. Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Takeshi Namiki

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ettore Appella

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge