Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julio Gutiérrez is active.

Publication


Featured researches published by Julio Gutiérrez.


Journal of Clinical Investigation | 2001

CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses

Rosa Varona; Ricardo Villares; Laura Carramolino; Íñigo Goya; Angel Zaballos; Julio Gutiérrez; Miguel Torres; Carlos Martínez-A; Gabriel Márquez

CCR6 expression in dendritic, T, and B cells suggests that this beta-chemokine receptor may regulate the migration and recruitment of antigen-presenting and immunocompetent cells during inflammatory and immunological responses. Here we demonstrate that CCR6-/- mice have underdeveloped Peyers patches, in which the myeloid CD11b+ CD11c+ dendritic-cell subset is not present in the subepithelial dome. CCR6-/- mice also have increased numbers in T-cell subpopulations within the intestinal mucosa. In 2,4-dinitrofluorobenzene-induced contact hypersensitivity (CHS) studies, CCR6-/- mice developed more severe and more persistent inflammation than wild-type (WT) animals. Conversely, in a delayed-type hypersensitivity (DTH) model induced with allogeneic splenocytes, CCR6-/- mice developed no inflammatory response. The altered responses seen in the CHS and DTH assays suggest the existence of a defect in the activation and/or migration of the CD4(+) T-cell subsets that downregulate or elicit the inflammation response, respectively. These findings underscore the role of CCR6 in cutaneous and intestinal immunity and the utility of CCR6-/- mice as a model to study pathologies in these tissues. This article was published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org.


Journal of Immunology | 2003

Absence of CCR8 Does Not Impair the Response to Ovalbumin-Induced Allergic Airway Disease

Íñigo Goya; Ricardo Villares; Angel Zaballos; Julio Gutiérrez; Leonor Kremer; Jose-Angel Gonzalo; Rosa Varona; Laura Carramolino; Alfredo Serrano; Pilar Pallarés; Luis M. Criado; Roland Kolbeck; Miguel Torres; Anthony J. Coyle; Jose-Carlos Gutierrez-Ramos; Carlos Martínez-A; Gabriel Márquez

Interaction of chemokines with their specific receptors results in tight control of leukocyte migration and positioning. CCR8 is a chemokine receptor expressed mainly in CD4+ single-positive thymocytes and Th2 cells. We generated CCR8-deficient mice (CCR8−/−) to study the in vivo role of this receptor, and describe in this study the CCR8−/− mouse response in OVA-induced allergic airway disease using several models, including an adoptive transfer model and receptor-blocking experiments. All CCR8−/− mice developed a pathological response similar to that of wild-type animals with respect to bronchoalveolar lavage cell composition, peripheral blood and bone marrow eosinophilia, lung infiltrates, and Th2 cytokine levels in lung and serum. The results contrast with a recent report using one of the OVA-induced asthma models studied here. Similar immune responses were also observed in CCR8−/− and wild-type animals in a different model of ragweed allergen-induced peritoneal eosinophilic inflammation, with an equivalent number of eosinophils and analogous increased levels of Th2 cytokines in peritoneum and peripheral blood. Our results show that allergic diseases course without critical CCR8 participation, and suggest that further work is needed to unravel the in vivo role of CCR8 in Th2-mediated pathologies.


FEBS Letters | 1998

Molecular cloning, functional characterization and mRNA expression analysis of the murine chemokine receptor CCR6 and its specific ligand MIP‐3α1

Rosa Varona; Angel Zaballos; Julio Gutiérrez; Pilar Martín; Fernando Roncal; Juan Pablo Albar; Carlos Ardavín; Gabriel Márquez

We have cloned the murine CCR6 receptor and its ligand, the β‐chemokine mMIP‐3α. Calcium mobilization assays performed with mCCR6 transfectants showed significant responses upon addition of mMIP‐3α. Murine MIP‐3α RNA is expressed in thymus, small intestine and colon, whereas mCCR6 RNA is expressed in spleen and lymph nodes. RT‐PCR analysis of FACS‐sorted lymphoid and antigen presenting cell subsets showed mCCR6 expression mainly in B cells, CD8− splenic dendritic cells and CD4+ T cells. The cloning and functional characterization of the mCCR6 and mMIP‐3α will allow the study of the role of these proteins in mouse models of inflammation and immunity.


Gene | 1995

An arabinose-inducible expression vector, pAR3, compatible with ColE1-derived plasmids

Julián Pérez-Pérez; Julio Gutiérrez

Arabinose-inducible genetic elements from the Salmonella typhimurium arabinose operon were inserted into pACYC184. The resultant plasmid, pAR3, is compatible with ColE1-derived plasmids and allows efficient expression of recombinant (re) genes upon induction with arabinose. These features make it convenient for use in combination with standard gene expression vectors for the independently controlled production of two or more re-polypeptides in Escherichia coli.


Journal of Leukocyte Biology | 1999

Down-regulation of the beta-chemokine receptor CCR6 in dendritic cells mediated by TNF-alpha and IL-4.

Laura Carramolino; Leonor Kremer; Íñigo Goya; Rosa Varona; José M. Buesa; Julio Gutiérrez; Angel Zaballos; Carlos Martínez-A; Gabriel Márquez

Chemokines are involved in the control of dendritic cell (DC) trafficking, which is critical for the immune response. We have generated DC from human umbilical cord blood CD34+ progenitors cultured with granulocyte‐macrophage colony‐stimulating factor, tumor necrosis factor α (TNF‐α), and stem cell factor. Using an anti‐CCR6 monoclonal antibody, we observed that these cells showed maximum expression of this β‐chemokine receptor when they were immature, as determined by their relatively low expression of several DC maturation markers such as CD1a, CD11c, CD14, CD40, CD80, and CD83. Immature DC responded strongly to macrophage inflammatory protein‐3α (MIP‐3α), the CCR6 ligand, in migration and calcium mobilization assays. CCR6 expression decreased in parallel with the DC maturation induced by prolonged TNF‐α treatments. Interleukin‐4 was also able to decrease CCR6 protein levels. Our findings suggest that the MIP‐3α/CCR6 interaction plays an important role in the trafficking of immature DC to chemokine production sites such as injured or inflamed peripheral tissues, where DC undergo maturation on contact with antigens. J. Leukoc. Biol. 66: 837–844; 1999.


Journal of Virology | 1987

Effect of NH4+ ions on phi 29 DNA-protein p3 replication: formation of a complex between the terminal protein and the DNA polymerase.

Luis Blanco; Ignacio Prieto; Julio Gutiérrez; Antonio Bernad; José M. Lázaro; José Miguel Hermoso; Margarita Salas

This work was supported by Community of Madrid (Grupo Estrategico 2000-2003), NIH, grant R01CA77575, and SAF 2001-2245.The transition step from the p3-dAMP initiation complex to the first elongated products, p3-(dAMP)2 and p3-(dAMP)3, requires a dATP concentration higher than that needed for the initiation reaction or for the further elongation of the p3-(dAMP)3 complex. The elongation in phi 29 DNA-protein p3 replication in vitro was strongly inhibited by salt. Under inhibitory salt concentration, the viral protein p6 greatly stimulated phi 29 DNA-protein p3 replication. The effect of protein p6 was not on the rate of elongation but on the amount of elongated product, stimulating the transition from initiation to formation of the first elongation products.Trabajo presentado en 44th Annual Meeting Society for Neuroscience, celebrado en Washington, DC (USA) del 15 al 19 de noviembre de 2014Recent studies have demonstrated that cytochrome c plays an important role in cell death. In the present study, we report that teniposide and various other chemotherapeutic agents induced a dose-dependent increase in the expression of the mitochondrial respiratory chain proteins cytochrome c, subunits I and IV of cytochrome c oxidase, and the free radical scavenging enzyme manganous superoxide dismutase. The teniposide-induced increase of cytochrome c was inhibited by cycloheximide, indicating new protein synthesis. Elevated cytochrome c levels were associated with enhanced cytochrome c oxidase-dependent oxygen uptake using TMPD/ascorbate as the electron donor, suggesting that the newly synthesized proteins were functional. Cytochrome c was released into the cytoplasm only after maximal levels had been reached in the mitochondria, but there was no concomitant decrease in mitochondrial membrane potential or caspase activation. Our results suggest that the increase in mitochondrial protein expression may play a role in the early cellular defense against anticancer drugs.Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.The results presented in this paper indicate that the phi 29 DNA polymerase is the only enzyme required for efficient synthesis of full length phi 29 DNA with the phi 29 terminal protein, the initiation primer, as the only additional protein requirement. Analysis of phi 29 DNA polymerase activity in various in vitro DNA replication systems indicates that two main reasons are responsible for the efficiency of this minimal system: 1) the phi 29 DNA polymerase is highly processive in the absence of any accessory protein; 2) the polymerase itself is able to produce strand displacement coupled to the polymerization process. Using primed M13 DNA as template, the phi 29 DNA polymerase is able to synthesize DNA chains greater than 70 kilobase pairs. Furthermore, conditions that increase the stability of secondary structure in the template do not affect the processivity and strand displacement ability of the enzyme. Thus, the catalytic properties of the phi 29 DNA polymerase are appropriate for a phi 29 DNA replication mechanism involving two replication origins, strand displacement and continuous synthesis of both strands. The enzymology of phi 29 DNA replication would support a symmetrical model of DNA replication.Aided by grants from the National Institutes of Health U.S. Public Health Service, and E. I. Du Pont de Neumours and Company, Inc.This work was supported in part by NRSA, National Institutes of Health Grants NS09463 and NS32501 and from National Science Foundation Grant 9310965.We have recently developed a new method to detect and characterize single base substitutions in transcribed genes which is based on the ability of RNAse A to recognize and cleave single base mismatches in RNA:RNA heteroduplexes. The RNAse A misrnatch cleavage assay was applied to screen human colon carcinoma cell lines and primary tumors for the presence of mutant e-X-ras oncogenes. We have determined that the mutant e-X-ras allele is overexpressed and amplified relative to the normal in the SX-CO-l human colon carcinoma cell lineo The oncogene mutation has been characterized by this method as a glycine to valine substitution at codon 12 of the e-X-ras gene. This result was confirmed by cloning and sequencing. We have previously reported that about 40% of primary human colon tumors contain e-X-ras genes mutant at codon 12 (Forrester et al, Nature 327: 298, 1987). We report here the characterization by molecular cloning and sequencing of the mutation in the e-X-ras oneogene from two of these tumors (tumors 3 and 28). We also describe the histopathologieal eharaeterization of these two tumors and demonstrate, by Southern blot hybridization of NIH3T3 transformants, the simultaneous presenee of mutant e-X-ras and N-ras oncogenes in villous adenoma 28. Our results provide evidence for the frequent assoeiation of ras somatie mutational aetivation in the early stages of tumor development in this common type of human eaneer.Aided by Grants AM-01845, AM-08953, and l-Sol-FR-05099 from the National Institutes o f Health, United States Public Health Service, and E. I. Du Pont de Nemours and Company, Inc. A preliminary report o f this work was presented at the Second Meeting o f the Federation o f European Biochemical Societies (symposium on “Ribonucleic Acid-Structure and Function”), Vienna, April 21 to 24, 1965.1 pagina.-- Trabajo presentado al: 4th International Meeting on Apicomplexa in Farm Animals. (Madrid, Spain. 11-14 October ,2017).Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.Resumen del trabajo presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.This article describes the expression pattern and functional analysis of Lazarillo, a novel cell surface glycoprotein expressed in the embryonic grasshopper nervous system, and a member of the lipocalin family. Lazarillo is expressed by a subset of neuroblasts, ganglion mother cells and neurons of the central nervous system, by all sensory neurons of the peripheral nervous system, and by a subset of neurons of the enteric nervous system. It is also present in a few non neuronal cells associated mainly with the excretory system. A monoclonal antibody raised against Lazarillo perturbs the extent and direction of growth of identified commissural pioneer neurons. We propose that Lazarillo is the receptor for a midline morphogen involved in the outgrowth and guidance of these neurons.Poster presentado al Annual Biomedical Research Conference for Minority Students celebrado en California (US) del 7 al 10 de noviembre de 2012.The phage phi 29 regulatory protein p4 activates the late promoter A3 by stabilizing the binding of Bacillus subtilis RNA polymerase (RNAP) as a closed complex. Interaction between the two proteins occurs through amino acid Arg120 in protein p4 and the C-terminal domain of the RNAP alpha subunit (alpha-CTD). In addition to its role as activator of the late transcription, protein p4 represses early transcription from the A2b and A2c promoters, that are divergently transcribed. Binding of p4 to its recognition site at the A3 promoter displaces the RNAP from promoter A2b, both by steric hindrance and by the curvature induced upon p4 binding. At the A2c promoter, the RNAP cooperates with p4 binding in such a way that promoter clearance is prevented. Interestingly, amino acid Arg120 in p4 and the alpha-CTD in B. subtilis RNAP are involved in the interactions that lead to transcription repression at promoter A2c. To investigate how this interaction leads to activation at PA3 and to repression at PA2c, mutant promoters were constructed. In the absence of a -35 consensus box for sigma A-RNAP activation was observed, while in its presence repression occurred. The results support the idea that overstabilization of RNAP at the promoter over a threshold level leads to repression.Resumen del poster presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.Formalin-fixed paraffin-embedded tissue specimens obtained by fine needle aspiration of pancreatic masses from 47 patients were examined retrospectively for cytology and the presence of mutant c-K-ras oncogenes. Point mutations of c-K-ras in codon 12 were detected by RNA-DNA RNAse A mismatch cleavage after in vitro DNA amplification of the cellular c-K-ras sequences by the polymerase chain reaction. Of the 36 patients with pancreatic adenocarcinoma, mutant c-K-ras oncogenes were detected in 18 of 25 (72%) with malignant cytologies, 2 of 8 (25%) with atypical cytologies, and 0 of 3 with benign aspiration cytologies. The remaining 11 patients without pancreatic adenocarcinomas did not have mutant c-K-ras genes detectable by the assay. The diagnosis of pancreatic adenocarcinoma was based upon clinical follow-up. The presence of mutant c-K-ras oncogenes did not significantly affect survival in the patients studied. Mutant c-K-ras genes were found at the time of initial clinical presentation in the majority of pancreatic adenocarcinomas, suggesting an important role of the mutation in oncogenesis. In conjunction with cytology, our approach represents an application for cancer diagnosis at the molecular genetic level.Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.To investigate the relationship between RNA folding and ribozyme catalysis, we have carried out a detailed kinetic analysis of four structural derivatives of the hairpin ribozyme. Optimal and suboptimal (wild-type) substrate sequences were studied in conjunction with stabilization of helix 4, which supports formation of the catalytic core. Pre-steady-state and steady-state kinetic studies strongly support a model in which each of the ribozyme variants partitions between two major conformations leading to active and inactive ribozymez substrate complexes. Reaction rates for cleavage, ligation, and substrate binding to both ribozyme conformations were determined. Ligation rates (3 min 21 ) were typically 15-fold greater than cleavage rates (0.2 min 21 ), demonstrating that the hairpin ribozyme is an efficient RNA ligase. On the other hand, substrate binding is very rapid (k on 5 4 3 10 8 M 21 min 21 ), and the ribozymez substrate complex is very stable (K D < 25 pM ;k off < 0.01 min 21 ). Stabilization of helix 4 increases the proportion of RNA molecules folded into the active conformation, and enhances substrate association and ligation rates. These effects can be explained by stabilization of the catalytic core of the ribozyme. Rigorous consideration of conformational isomers and their intrinsic kinetic properties was necessary for development of a kinetic scheme for the ribozyme-catalyzed reaction.The human integrin VLA (very late activation antigens)-4 (CD49d/CD29), the leukocyte receptor for both the CS-1 region of plasma fibronectin (Fn) and the vascular cell surface adhesion molecule-1 (VCAM-1), also mediates homotypic aggregation upon triggering with specific anti-VLA-4 monoclonal antibody (mAb). Epitope mapping of this integrin on the human B-cell line Ramos, performed with a wide panel of anti-VLA-4 mAb by both cross-competitive cell binding and protease sensitivity assays, revealed the existence of three topographically distinct epitopes on the alpha 4 chain, referred to as epitopes A-C. By testing this panel of anti-VLA-4 mAb for inhibition of cell binding to both a 38-kDa Fn fragment containing CS-1 and to VCAM-1, as well as for induction and inhibition of VLA-4 mediated homotypic cell adhesion, we have found overlapping but different functional properties associated with each epitope. Anti-alpha 4 mAb recognizing epitope B inhibited cell attachment to both Fn and VCAM-1, whereas mAb against epitope A did not block VCAM-1 binding and only partially inhibited binding to Fn. In contrast, mAb directed to epitope C did not affect cell adhesion to either of the two VLA-4 ligands. All mAb directed to site A, as well as a subgroup of mAb recognizing epitope B (called B2), were able to induce cell aggregation, but this effect was not exerted by mAb specific to site C and by a subgroup against epitope B (called B1). Moreover, although anti-epitope C and anti-epitope B1 mAb did not trigger aggregation, those mAb blocked aggregation induced by anti-epitope A or B2 mAb. In addition, anti-epitope A mAb blocked B2-induced aggregation, and conversely, anti-epitope B2 mAb blocked A-induced aggregation. Further evidence for multiple VLA-4 functions is that anti-Fn and anti-VCAM-1 antibodies inhibited binding to Fn or to VCAM-1, respectively, but did not affect VLA-4-mediated aggregation. In summary, we have demonstrated that there are at least three different VLA-4-mediated adhesion functions, we have defined three distinct VLA-4 epitopes, and we have correlated these epitopes with the different functions of VLA-4.Lazarillo, a protein recognized by the monoclonal antibody 10E6, is expressed by a subset of neurons in the developing nervous system of the grasshopper. It is a glycoprotein of 45x10(3) M(r) with internal disulfide bonds and linked to the extracellular side of the plasma membrane by a glycosylphosphatidylinositol moiety. Peptide sequences obtained from affinity purified adult protein were used to identify an embryonic cDNA clone, and in situ hybridizations confirmed that the distribution of the Lazarillo mRNA paralleled that of the monoclonal antibody labeling on embryos. Sequence analysis defines Lazarillo as a member of the lipocalin family, extracellular carriers of small hydrophobic ligands, and most related to the porphyrin- and retinol-binding lipocalins. Lazarillo is the first example of a lipocalin anchored to the plasma membrane, highly glycosylated, and restricted to a subset of developing neurons.Trabajo presentado al Annual Biomedical Research Conference for Minority Students celebrada en Nashville (US) del 13 al 16 de noviembre de 2013.A cDNA has been isolated from human hippocampus that appears to encode a novel Na(+)-dependent, Cl(-)-independent, neutral amino acid transporter. The putative protein, designated SATT, is 529 amino acids long and exhibits significant amino acid sequence identity (39-44%) with mammalian L-glutamate transporters. Expression of SATT cDNA in HeLa cells induced stereospecific uptake of L-serine, L-alanine, and L-threonine that was not inhibited by excess (3 mM) 2-(methylamino)-isobutyric acid, a specific substrate for the System A amino acid transporter. SATT expression in HeLa cells did not induce the transport of radiolabeled L-cysteine, L-glutamate, or related dicarboxylates. Northern blot hybridization revealed high levels of SATT mRNA in human skeletal muscle, pancreas, and brain, intermediate levels in heart, and low levels in liver, placenta, lung, and kidney. SATT transport characteristics are similar to the Na(+)-dependent neutral amino acid transport activity designated System ASC, but important differences are noted. These include: 1) SATTs apparent low expression in ASC-containing tissues such as liver or placenta; 2) the lack of mutual inhibition between serine and cysteine; and 3) the lack of trans-stimulation. SATT may represent one of multiple activities that exhibit System ASC-like transport characteristics in diverse tissues and cell lines.


Journal of Immunology | 2001

The Transient Expression of C-C Chemokine Receptor 8 in Thymus Identifies a Thymocyte Subset Committed to Become CD4+ Single-Positive T Cells

Leonor Kremer; Laura Carramolino; Íñigo Goya; Angel Zaballos; Julio Gutiérrez; María del Carmen Moreno-Ortiz; Carlos Martínez-A; Gabriel Márquez

Developing T cells journey through the different thymic microenvironments while receiving signals that eventually will allow some of them to become mature naive T cells exported to the periphery. This maturation can be visualized by the phenotype of the developing cells. CCR8 is a β-chemokine receptor preferentially expressed in the thymus. We have developed 8F4, an anti-mouse CCR8 mAb that is able to neutralize the ligand-induced activation of CCR8, and used it to characterize the CCR8 protein expression in the different thymocyte subsets. Taking into account the intrathymic lineage relationships, our data showed that CCR8 expression in thymus followed two transient waves along T cell maturation. The first one took place in CD4− CD8− double-negative thymocytes, which showed a low CCR8 expression, and the second wave occurred after TCR activation by the Ag-dependent positive selection in CD4+ CD8+ double-positive cells. From that maturation stage, CCR8 expression gradually increased as the CD4+ cell differentiation proceeded, reaching a maximum at the CD4+ CD8− single-positive stage. These CD4+ cells expressing CCR8 were also CD69high CD62Llow thymocytes, suggesting that they still needed to undergo some differentiation step before becoming functionally competent naive T cells ready to be exported from the thymus. Interestingly, no significant amounts of CCR8 protein were detectable in CD4− CD8+ thymocytes. Our data showing a clear regulation of the CCR8 protein in thymus suggest a relevant role for CCR8 in this lymphoid organ, and identify CCR8 as a possible marker of thymocyte subsets recently committed to the CD4+ lineage.


Virology | 1986

Signals in the φ29 DNA-terminal protein template for the initiation of phage φ29 DNA replication

Julio Gutiérrez; Javier Vinós; Ignacio Prieto; Enrique Méndez; José Miguel Hermoso; Margarita Salas

Abstract The protein-free terminal fragments Hind III B and L, from the left and right ends of φ29 DNA, respectively, but not internal fragments of similar size, were active as templates in the formation of the p3-dAMP initiation complex in an in vitro system containing purified φ29 terminal protein p3 and DNA polymerase p2, although the activity was lower than that obtained with the φ29 DNA-p3 complex. These results indicate the existence of specific sequences at the ends of φ29 DNA that allow the initiation of φ29 DNA replication. The template activity of the protein-free terminal fragments was size dependent. The protein-free single strands of the Hind III L fragment were much less active than the corresponding double-stranded fragment. Terminal protein-DNA complexes of phages PZA and φ15, with a terminal protein closely related to the φ29 protein p3, were more active as templates in the initiation reaction with the purified φ29 proteins than the corresponding protein-free DNAs, as it happens in the case of φ29 However, the terminal protein-DNA complexes of phages Nf, B103, and GA-1, with a terminal protein less related or unrelated to the φ29 protein p3, were essentially inactive and became active after removal of the parental terminal protein. These results strongly suggest that the parental terminal protein is the major signal in the template for the initiation of φ29 DNA replication.


Molecular Pharmacology | 2005

Identification and Characterization of a Potent, Selective Nonpeptide Agonist of the CC Chemokine Receptor CCR8

Christopher A. Haskell; Richard Horuk; Meina Liang; Mary Rosser; Laura Dunning; Imadul Islam; Leonor Kremer; Julio Gutiérrez; Gabriel Márquez; Carlos Martínez-A; Mark J. Biscone; Robert W. Doms; Sofia Ribeiro

In this study, we report the first example of a nonpeptide chemokine receptor agonist, 2-{2-[4-(3-phenoxybenzyl)piperazin-1-yl]ethoxy}ethanol (ZK 756326), for the CC chemokine receptor CCR8. ZK 756326 inhibited the binding of the CCR8 ligand I-309 (CCL1), with an IC50 value of 1.8 μM. Furthermore, ZK 756326 was a full agonist of CCR8, dose-responsively eliciting an increase in intracellular calcium and cross-desensitizing the response of the receptor to CCL1. In addition, ZK 756326 stimulated extracellular acidification in cells expressing human CCR8. The ability of ZK 756326 to induce a response was receptor-specific and mediated through Gαi, because it could be blocked by treatment with pertussis toxin. The CCR8 agonist activated cells expressing murine CCR8, eliciting their chemotaxis and inducing phosphorylation of extracellular signal-regulated kinase ERK1/2. Like CCL1, ZK 756326 inhibited human immunodeficiency virus (HIV) fusion of cells expressing CD4 and CCR8. Finally, unlike mCCL1, ZK 756326 bound to and activated a form of mCCR8 that was mutated to eliminate O-linked sulfation at tyrosines 14 and 15. Therefore, ZK 756326 is most probably not binding in the same manner as CCL1 but can activate the switch mechanism involved in transducing signaling events. In summary, we have identified a nonpeptide agonist of CCR8. This compound may be useful in evaluating the physiological role of CCR8 in HIV infection, as well as in the general study of CCR8 biology without the constraints inherent to the use of protein agonists such as its natural ligand.


Journal of Biotechnology | 1996

Different PrlA proteins increase the efficiency of periplasmic production of human Interleukin-6 in Escherichia coli

Julián Pérez-Pérez; JoséLuis Barbero; Gabriel Márquez; Julio Gutiérrez

The export efficiency of a fusion of the Escherichia coli preOmpA signal peptide to human interleukin-6 can be significantly raised by coexpressing three different prlA alleles of sec Y along with wild type secE. The effect seems prlA-specific, as prlG1 (a prl allele of secE) does not affect the export of preOmpA-hIL-6. Coexpression of secD and secF also stimulates the export of the fusion protein.

Collaboration


Dive into the Julio Gutiérrez's collaboration.

Top Co-Authors

Avatar

Gabriel Márquez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angel Zaballos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rosa Varona

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Martínez-A

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Leonor Kremer

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laura Carramolino

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Íñigo Goya

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonio Bernad

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fernando Roncal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ignacio Prieto

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge