Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julio Polaina is active.

Publication


Featured researches published by Julio Polaina.


Journal of Biological Chemistry | 2006

Novel Polyphenol Oxidase Mined from a Metagenome Expression Library of Bovine Rumen BIOCHEMICAL PROPERTIES, STRUCTURAL ANALYSIS, AND PHYLOGENETIC RELATIONSHIPS

Ana Beloqui; Marcos Pita; Julio Polaina; A. Martínez-Arias; Olga V. Golyshina; Miren Zumárraga; Michail M. Yakimov; Humberto García-Arellano; Miguel Alcalde; Victor M. Fernandez; Kieran Elborough; Antonio Ballesteros; Francisco J. Plou; Kenneth N. Timmis; Manuel Ferrer; Peter N. Golyshin

RL5, a gene coding for a novel polyphenol oxidase, was identified through activity screening of a metagenome expression library from bovine rumen microflora. Characterization of the recombinant protein produced in Escherichia coli revealed a multipotent capacity to oxidize a wide range of substrates (syringaldazine > 2,6-dimethoxyphenol > veratryl alcohol > guaiacol > tetramethylbenzidine > 4-methoxybenzyl alcohol > 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) >> phenol red) over an unusually broad range of pH from 3.5 to 9.0. Apparent Km and kcat values for ABTS, syringaldazine, and 2,6-dimetoxyphenol obtained from steady-state kinetic measurements performed at 40 °C, pH 4.5, yielded values of 26, 0.43, and 0.45 μm and 18, 660, and 1175 s-1, respectively. The Km values for syringaldazine and 2,6-dimetoxyphenol are up to 5 times lower, and the kcat values up to 40 times higher, than values previously reported for this class of enzyme. RL5 is a 4-copper oxidase with oxidation potential values of 745, 400, and 500 mV versus normal hydrogen electrode for the T1, T2, and T3 copper sites. A three-dimensional model of RL5 and site-directed mutants were generated to identify the copper ligands. Bioinformatic analysis of the gene sequence and the sequences and contexts of neighboring genes suggested a tentative phylogenetic assignment to the genus Bacteroides. Kinetic, electrochemical, and EPR analyses provide unequivocal evidence that the hypothetical proteins from Bacteroides thetaiotaomicron and from E. coli, which are closely related to the deduced protein encoded by the RL5 gene, are also multicopper proteins with polyphenol oxidase activity. The present study shows that these three newly characterized enzymes form a new family of functional multicopper oxidases with laccase activity related to conserved hypothetical proteins harboring the domain of unknown function DUF152 and suggests that some other of these proteins may also be laccases.


Lipids | 2002

Cloning and molecular characterization of the Δ6-desaturase from two Echium plant species: Production of GLA by heterologous expression in yeast and tobacco

Federico García-Maroto; Jose Antonio Garrido-Cardenas; Juan Rodríguez-Ruiz; Miguel Vilches-Ferrón; Ana C. Adam; Julio Polaina; Diego López Alonso

The synthesis of GLA (Δ6, 9, 12-18:3) is carried out in a number of plant taxa by introducing a double bond at the Δ6 position of its precursor, linoleic acid (Δ9, 12-18:2), through a reaction catalyzed by a Δ6-desaturase enzyme. We have cloned genes encoding the Δ6-desaturase (D6DES) from two different Macaronesian Echium species, E. pitardii and E. gentianoides (Boraginaceae), which are characterized by the accumulation of high amounts of GLA in their seeds. The Echium D6DES genes encode proteins of 438 amino acids bearing the prototypical cytochrome b5 domain at the N-terminus. Cladistic analysis of desaturases from higher plants groups the Echium D6DES proteins together with other Δ6-desaturases in a different cluster from that of the highly related Δ8-desaturases. Expression analysis carried out in E. pitardii shows a positive correlation between the D6DES transcript level and GLA accumulation in different tissues of the plant. Although a ubiquitous expression in all organs is observed, the transcript is particularly abundant in developing fruits, whereas a much lower level is present in mature leaves. Functional characterization of the D6DES gene from E. gentianoides has been achieved by heterologous expression in tobacco plants and in the yeast Saccharomyces cerevisiae. In both cases, overexpression of the gene led to the synthesis of GLA. Biotechnological application of these results can be envisaged as an initial step toward the generation of transgenic oleaginous plants producing GLA.


Critical Reviews in Food Science and Nutrition | 2005

Lactose: The Milk Sugar from a Biotechnological Perspective

Ana C. Adam; Marta Rubio-Texeira; Julio Polaina

Abstract Lactose is a very important sugar because of its abundance in the milk of humans and domestic animals. Lactose is a valuable asset as a basic nutrient and the main substrate in fermentative processes that led to the production of fermented milk products, such as yogurt and kefir. In some instances, lactose also can be a problem as the causative agent of some diseases, such as lactose intolerance and galactosemia, or for being a by-product generated in huge amounts by the cheese industry. The study of the biochemical reactions leading to the synthesis and assimilation of lactose has provided valuable models for the understanding of biosynthetic and catabolic processes. Lactose-hydrolyzing enzymes are structurally and phylogenetically related to different types of beta-galactosidases and bacterial cellobiases involved in the enzymatic degradation of cellulose. Biotransformation of lactose, by either enzymatic or fermentative procedures, is important for different types of industrial applications in dairy and pharmaceutical industries.


Journal of Biological Chemistry | 2002

Structure-Function Analysis of Yeast Grx5 Monothiol Glutaredoxin Defines Essential Amino Acids for the Function of the Protein

Gemma Bellı́; Julio Polaina; Jordi Tamarit; Marı́a Angeles de la Torre; María Teresa Rodríguez-Manzaneque; Joaquim Ros; Enrique Herrero

Grx5 defines a family of yeast monothiol glutaredoxins that also includes Grx3 and Grx4. All three proteins display significant sequence homology with proteins found from bacteria to humans. Grx5 is involved in iron/sulfur cluster assembly at the mitochondria, but the function of Grx3 and Grx4 is unknown. Three-dimensional modeling based on known dithiol glutaredoxin structures predicted a thioredoxin fold structure for Grx5. Positionally conserved amino acids in this glutaredoxin family were replaced in Grx5, and the effect on the biological function of the protein has been tested. For all changes studied, there was a correlation between the effects on several different phenotypes: sensitivity to oxidants, constitutive protein oxidation, ability for respiratory growth, auxotrophy for a number of amino acids, and iron accumulation. Cys60 and Gly61 are essential for Grx5 function, whereas other single or double substitutions in the same region had no phenotypic effects. Gly115 and Gly116 could be important for the formation of a glutathione cleft on the Grx5 surface, in contrast to adjacent Cys117. Substitution of Phe50 alters the β-sheet in the thioredoxin fold structure and inhibits Grx5 function. None of the substitutions tested affect the structure at a significant enough level to reduce protein stability.


Current Genetics | 1983

STA10: A gene involved in the control of starch utilization by Saccharomyces

Julio Polaina; Melanie Y. Wiggs

SummaryGenetic analysis of crosses carried out between starch utilizing strains of Saccharomyces diastaticus and laboratory strains of S. cerevisiae has revealed the existence of a gene which inhibits the expression of the amylolytic capability in the resulting hybrids, as well as in the meiotic offspring of the crosses. This gene is unlinked to any of the three STA genes which are known to be responsible for starch utilization by S. diastaticus.


Biotechnology for Biofuels | 2012

Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail

Mercedes V. Del Pozo; Lucia Fernandez-Arrojo; Jorge Gil-Martínez; Alejandro Montesinos; Tatyana N. Chernikova; Taras Y. Nechitaylo; Agnes Waliszek; Marta Tortajada; Antonia Rojas; Sharon A. Huws; Olga V. Golyshina; C. J. Newbold; Julio Polaina; Manuel Ferrer; Peter N. Golyshin

BackgroundA complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product.ResultsIn the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen. The enzymes were most active at temperatures 45–55°C and pH 4.0-7.0 and exhibited high affinity and activity towards synthetic substrates such as p-nitrophenyl-beta-D-glucopyranoside (p NPbetaG) and p NP-beta-cellobiose, as well as to natural cello-oligosaccharides ranging from cellobiose to cellopentaose. The apparent capability of the most active beta-glucosidase, herein named LAB25g2, was tested for its ability to improve, at low dosage (31.25 units g-1 dry biomass, using p NPbetaG as substrate), the hydrolysis of pre-treated corn stover (dry matter content of 20%; 350 g glucan kg-1 dry biomass) in combination with a beta-glucosidase-deficient commercial Trichoderma reseei cellulase cocktail (5 units g-1 dry biomass in the basis of p NPbetaG). LAB25g2 increased the final hydrolysis yield by a factor of 20% (44.5 ± 1.7% vs. 34.5 ± 1.5% in control conditions) after 96–120 h as compared to control reactions in its absence or in the presence of other commercial beta-glucosidase preparations. The high stability (half-life higher than 5 days at 50°C and pH 5.2) and 2–38000 fold higher (as compared with reported beta-glucosidases) activity towards cello-oligosaccharides may account for its performance in supplementation assays.ConclusionsThe results suggest that beta-glucosidases from yet uncultured bacteria from animal digestomes may be of a potential interest for biotechnological processes related to the effective bio-ethanol production in combination with low dosage of commercial cellulases.


Applied and Environmental Microbiology | 2010

Diversity of Glycosyl Hydrolases from Cellulose-Depleting Communities Enriched from Casts of Two Earthworm Species†

Ana Beloqui; Taras Y. Nechitaylo; Nieves López-Cortés; Azam Ghazi; María-Eugenia Guazzaroni; Julio Polaina; Axel Strittmatter; Oleg N. Reva; Agnes Waliczek; Michail M. Yakimov; Olga V. Golyshina; Manuel Ferrer; Peter N. Golyshin

ABSTRACT The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-β-glucanases, β-glucosidases, β-cellobiohydrolases, β-galactosidase, and β-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of β-galactosidases/α-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales).


PLOS ONE | 2012

Functional Metagenomics Unveils a Multifunctional Glycosyl Hydrolase from the Family 43 Catalysing the Breakdown of Plant Polymers in the Calf Rumen

Manuel Ferrer; Azam Ghazi; Ana Beloqui; José María Vieites; Nieves López-Cortés; Julia Marín-Navarro; Taras Y. Nechitaylo; María-Eugenia Guazzaroni; Julio Polaina; Agnes Waliczek; Tatyana N. Chernikova; Oleg N. Reva; Olga V. Golyshina; Peter N. Golyshin

Microbial communities from cow rumen are known for their ability to degrade diverse plant polymers at high rates. In this work, we identified 15 hydrolases through an activity-centred metagenome analysis of a fibre-adherent microbial community from dairy cow rumen. Among them, 7 glycosyl hydrolases (GHs) and 1 feruloyl esterase were successfully cloned, expressed, purified and characterised. The most striking result was a protein of GH family 43 (GHF43), hereinafter designated as R_09-02, which had characteristics very distinct from the other proteins in this family with mono-functional β-xylosidase, α-xylanase, α-L-arabinase and α-L-arabinofuranosidase activities. R_09-02 is the first multifunctional enzyme to exhibit β-1,4 xylosidase, α-1,5 arabinofur(pyr)anosidase, β-1,4 lactase, α-1,6 raffinase, α-1,6 stachyase, β-galactosidase and α-1,4 glucosidase activities. The R_09-02 protein appears to originate from the chromosome of a member of Clostridia, a class of phylum Firmicutes, members of which are highly abundant in ruminal environment. The evolution of R_09-02 is suggested to be driven from the xylose- and arabinose-specific activities, typical for GHF43 members, toward a broader specificity to the glucose- and galactose-containing components of lignocellulose. The apparent capability of enzymes from the GHF43 family to utilise xylose-, arabinose-, glucose- and galactose-containing oligosaccharides has thus far been neglected by, or could not be predicted from, genome and metagenome sequencing data analyses. Taking into account the abundance of GHF43-encoding gene sequences in the rumen (up to 7% of all GH-genes) and the multifunctional phenotype herein described, our findings suggest that the ecological role of this GH family in the digestion of ligno-cellulosic matter should be significantly reconsidered.


Applied and Environmental Microbiology | 2011

Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase

Álvaro Lafraya; Julia Sanz-Aparicio; Julio Polaina; Julia Marín-Navarro

ABSTRACT Efficient enzymatic synthesis of tailor-made prebiotic fructo-oligosaccharides (FOS) used in functional food formulation is a relevant biotechnological objective. We have engineered the Saccharomyces cerevisiae invertase (Suc2) to improve its transferase activity and to identify the enzymatic determinants for product specificity. Amino acid replacement (W19Y, N21S, N24S) within a conserved motif (β-fructosidase) specifically increased the synthesis of 6-kestose up to 10-fold. Mutants with lower substrate (sucrose) affinity produced FOS with longer half-lives. A mutation (P205V) adjacent to another conserved motif (EC) caused a 6-fold increment in 6-kestose yield. Docking studies with a Suc2 modeled structure defined a putative acceptor substrate binding subsite constituted by Trp 291 and Asn 228. Mutagenesis studies confirmed the implication of Asn 228 in directing the orientation of the sucrose molecule for the specific synthesis of β(2,6) linkages.


Yeast | 1998

Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.

Marta Rubio-Texeira; Juan Ignacio Castrillo; Ana C. Adam; Unai Ugalde; Julio Polaina

A diploid strain of Saccharomyces cerevisiae able to metabolize lactose with high efficiency has been obtained. Haploid strains of Saccharomyces able to grow on lactose were constructed by cotransformation with two genes of Kluyveromyces lactis required for the utilization of the sugar, LAC4 and LAC12, encoding β‐galactosidase and lactose permease respectively. Both genes were placed under the control of a galactose‐inducible promoter and targeted to the rDNA encoding region (RDN1 locus) of the Saccharomyces genome. Lac+ transformants were selected on medium with lactose as the only carbon source. These transformants were mitotically stable, they maintained the Lac+ phenotype after growing in non‐selective medium for more than 60 generations, but their growth was slow. We found that this lack of vigour was caused by their genetic background and not by a deficient expression of the heterologous genes. Therefore, their performance could be improved by crossing with a wild‐type strain. Among the offspring of the crosses, two strains of opposite mating type were selected and mated to obtain a fast‐growing Lac+ diploid. This diploid strain showed the typical fermentative behaviour of S. cerevisiae when it was grown in aerated liquid medium with glucose. In lactose medium, it exhibited a respiro‐fermentative metabolism similar to that of K. lactis, with low ethanol production and high biomass yield.

Collaboration


Dive into the Julio Polaina's collaboration.

Top Co-Authors

Avatar

Julia Marín-Navarro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana C. Adam

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuel Ferrer

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

David Talens-Perales

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Ballesteros

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Beloqui

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francisco J. Plou

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. Sanz-Aparicio

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge