Julio R. De la Fuente
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julio R. De la Fuente.
Photochemistry and Photobiology | 2003
Gabriela Viteri; Ana M. Edwards; Julio R. De la Fuente; Eduardo Silva
Abstract Time-resolved photolysis studies of riboflavin (RF) were carried out in the presence and absence of α-, βH- and βL-crystallins of bovine eye lens. The transient absorption spectra, recorded 5 μs after the laser pulse, reveal the presence of the absorption band (625–675 nm) of the RF neutral triplet state (τ = 42 μs) accompanied by the appearance of a long-lived absorption (τ = 320 μs) in the 500–600 nm region due to the formation of the semireduced RF radical. The RF excited state is quenched by the crystallin proteins through a mechanism that involves electron transfer from the proteins to the flavin, as shown by the decrease of the triplet RF band with the concomitant increase of the band of its semireduced form. Tryptophan loss on RF-sensitized photooxidation of the crystallins when irradiated with monochromatic visible light (450 nm) in a 5% oxygen atmosphere was studied. A direct correlation was found between the triplet RF quenching rate constants by the different crystallin fractions and the decomposition rate constants for the exposed and partially buried tryptophans in the proteins. The RF-sensitized photooxidation of the crystallins is accompanied by the decrease of the low molecular weight constituents giving rise to its multimeric forms. A direct correlation was observed between the initial rate of decrease of the low molecular weight bands corresponding to the irradiated α-, βH- and βL-crystallins and the quenching constant values of triplet RF by the different crystallins. The correlations found in this study confirm the importance of the Type-I photosensitizing mechanism of the crystallins, when RF acts as a sensitizer at low oxygen concentration, as can occur in the eye lens.
Photochemistry and Photobiology | 2004
Eduardo Silva; L Herrera; Ana M. Edwards; Julio R. De la Fuente; Eduardo Lissi
Abstract We have investigated the riboflavin (RF)-sensitized inactivation of glucose 6-phosphate dehydrogenase (G6PD) in the presence and absence of trans-urocanic acid (UCA). The inactivation of the enzyme results from its direct oxidation by the excited triplet RF in a Type-I–photosensitized reaction whose efficiency increases at low oxygen concentration. The addition of histidine to the system produced no change in the inactivation rate, discarding the participation of singlet oxygen in the reaction. On the other hand, the presence of UCA results in its bleaching, with a significant enhancement of RF-mediated inactivation of G6PD. Both the consumption of UCA and G6PD are faster at low oxygen concentrations. UCA also produced a decrease in the sensitizer photodecomposition yield. These results indicate that the enhancement of the RF-mediated G6PD inactivation observed in the presence of UCA is not a singlet oxygen–mediated process. It is proposed that UCA consumption and its effect on G6PD inactivation are due to a complex reaction sequence initiated by a direct oxidation of UCA by the excited sensitizer triplet. The oxidation of the semireduced flavin gives rise to reactive oxygen species (ROS) responsible for the increased rate of the process. This is supported by the protection afforded by several additives with ROS removal capacity: benzoate, superoxide dismutase and catalase.
Journal of Physical Chemistry A | 2009
Julio R. De la Fuente; Christian Aliaga; Cristian Poblete; Gerald Zapata; Carolina Jullian; Claudio Saitz; Alvaro Cañete; Gabriel Kciuk; Eduardo Sobarzo-Sánchez; Krzysztof Bobrowski
Photoreduction of oxoisoaporphine (OIA) (1-aza-benzo-[de]anthracen-7-one) and its 5-methoxy (5-MeO-OIA) derivative by selected amines (two non-alpha-hydrogen-donating amines (1,4-diaza[2.2.2]-bicyclooctane (DABCO) and 2,2,6,6-tetramethylpiperidine (TMP)) and three alpha-hydrogen-donating amines (triethylamine (TEA), diethylmethylamine (DEMA), and dimethylethylamine (DMEA))) has been studied in deaerated neat acetonitrile solutions using laser flash and steady-state photolysis. The triplet excited states of OIA and 5-MeO-OIA are characterized by intense absorption maxima located at lambda(max) = 450 nm and lifetimes of 34.7 +/- 0.5 and 44.6 +/- 0.4 micros, respectively. In the presence of tertiary amines, both triplets are quenched with a rate constant that varies from the near diffusion limit (>10(9) M(-1) s(-1)) to a rather low value (approximately 10(7) M(-1) s(-1)) and shows the expected dependence on the reduction potential for one-electron-transfer reactions. The transient absorption spectra observed after quenching of the respective triplet states are characterized by distinct absorption maxima located at lambda(max) = 480 and 490 nm (for OIA and 5-MeO-OIA, respectively) and accompanied by broad shoulders in the range of 510-560 nm. They were assigned to either solvent-separated radical ion pairs and/or isolated radical anions. In the presence of alpha-hydrogen-donating amines these species undergo protonation that leads to the formation of neutral hydrogenated radicals A1H(*)/A2H(*) with two possible sites of protonation, N and O atoms. Pulse radiolysis and molecular modeling together with TD-DFT calculations were used to support the conclusions about the origin of transients.
Journal of Physical Chemistry A | 2015
Nancy Pizarro; Mario Duque; Eduardo Chamorro; Santi Nonell; Jorge Manzur; Julio R. De la Fuente; Germán Günther; Marjorie Cepeda-Plaza; Andrés Vega
The spectroscopic, electrochemical, and photophysical properties of the new complex [P,N-{(C6H5)2(C5H4N)P}Re(CO)3Br] are reported. The UV-vis spectrum in dichloromethane shows an absorption maximum centered at 315 nm and a shoulder at 350 nm. These absorption bands have been characterized to have MLCT character. Excitation at both wavelengths (maximum and shoulder) leads to an emission band centered at 550 nm. Cyclic voltammetry experiments show two ill-defined irreversible oxidation waves around +1.50 and 1.80 V that are assigned to Re(I)/Re(II) and Re(II)/Re(III) couples whereas an irreversible reduction signal centered at -1.80 V is likewise assigned to a ligand reduction process. These results support the proposal of the MLCT nature of the states implied by the emission of the complex. The luminescent decay fits to a biexponential function, where the lifetimes and emission quantum yields are dependent on the solvent polarity. DFT calculations suggest that dπ → π*pyridine and dπ → π*phenyl excited states may account for the existence of two decay lifetimes.
Photochemical and Photobiological Sciences | 2004
Julio R. De la Fuente; Carolina Jullian; Claudio Saitz; Eduardo Sobarzo-Sánchez; Verónica Neira; Claudio González; Rodrigo A. López; Hernán Pessoa-Mahana
Photoreduction of 5,6-dimethoxy-, 5-methoxy- and 2,3-dihydro-7H-dibenzo[de,h]quinolin-7-one (A) by tertiary amines in oxygen-free solutions generates long-lived semi-reduced metastable photoproducts, A-NH(-), via a stepwise electron-proton-electron transfer mechanism with a limit quantum yield of about 0.1 at high TEA concentrations. These metastable photoproducts revert thermally to the initial oxoisoaporphine nearly quantitatively in the presence or absence of oxygen. We present spectrophotometric, NMR and UV-vis data for the metastable photoproducts. The spectrophotometric results and PM3 and ZINDO/S calculations support the proposed mechanism for the photoreduction of the oxoisoaporphines.
Journal of Physical Chemistry A | 2008
Julio R. De la Fuente; Gabriel Kciuk; Eduardo Sobarzo-Sánchez; Krzysztof Bobrowski
The absorption-spectral and kinetic behavior of radical ions and triplet states of two oxoisoaporphine derivatives, 2,3-dihydrooxoisoaporphine (2,3-DHOA) and 5-methoxy-2,3-dihydrooxoisoaporphine (5-MeO-2,3-DHOA), have been studied by UV-vis spectrophotometric pulse radiolysis in a neat acetonitrile saturated with argon and oxygen at room temperature. The radical anions of 2,3-DHOA and 5-MeO-2,3-DHOA are characterized by intense absorption maxima located at lambda max = 605 and 590 nm, with molar absorption coefficients 605 = 5600 M (-1) cm (-1) and 590 = 4900 M (-1) cm (-1), respectively. Both radical anions decay via first-order kinetics with the rate constants in the range (1.5-2.6) x 10 (5) s (-1), predominantly through protonation by adventitious water forming neutral-hydrogenated radicals. Oxygen insensitive, the radical cations of 2,3-DHOA are characterized by a strong nondescript absorption band with no distinct lambda max in the range 350-450 nm. On the other hand, the radical cations of 5-MeO-2,3-DHOA are characterized by the distinctive absorption band with lambda max = 420 nm. The experimental spectra of the neutral-hydrogenated radicals and the triplet excited states derived from 2,3-DHOA and 5-MeO-2,3-DHOA are in accordance with the spectra observed previously during laser flash photolysis ( De la Fuente, J. R. ; et al. J. Phys. Chem. 2005, 109, 5897 ). Most of the transient spectra generated radiolytically are adequately reproduced by quantum mechanical semiempirical PM3 and ZINDO/S methods.
Photochemistry and Photobiology | 2013
Julio R. De la Fuente; Alvaro Cañete; Carolina Jullian; Claudio Saitz; Christian Aliaga
Photoinduced electron transfer between N‐phenylglycine (NPG) and electronically excited triplets of 7‐substituted‐3‐methyl‐quinoxalin‐2‐ones in acetonitrile generate the respective ion radical pair, where by decarboxylation the phenyl‐amino‐alkyl radical, PhNHCH2•, is generated. This radical reacts with the 3‐methyl‐quinoxalin‐2‐ones ground states, leading to the product 2. Other, unexpected, 7‐substituted‐1,2,3,3a‐tetrahydro‐3a‐methyl‐2‐phenylimidazo[1,5‐a]quinoxalin‐4(5H)‐ones, annulation products, 3a–f, were generated; likely by the addition of two PhNHCH2• radicals, to positions 3 and 4 of the quinoxalin‐2‐ones. The reaction mechanism includes a photoinduced one electron transfer initiation step, propagation steps involving radical intermediates and NPG with radical chain termination steps that lead to the respective products 2a–f and 3a–f and NPG by‐products. The proposed mechanism accounts for the strong dependency found for the initial photoconsumption quantum yields on the electron‐withdrawing power of the substituent. Therefore, photolysis of common reactants widely used such as NPG and substituted quinoxalin‐2‐ones may provide a simple synthetic way to the unusual, unreported tetrahydro‐imidazoquinoxalinones 3a–f.
Molecules | 2014
Konrad Skotnicki; Julio R. De la Fuente; Alvaro Cañete; Krzysztof Bobrowski
The kinetics and spectral characteristics of the transients formed in the reactions of •OH and •N3 with quinoxalin-2(1H)-one (Q), its methyl derivative, 3-methylquinoxalin-2(1H)-one (3-MeQ) and pyrazin-2-one (Pyr) were studied by pulse radiolysis in aqueous solutions at pH 7. The transient absorption spectra recorded in the reactions of •OH with Q and 3-MeQ consisted of an absorption band with λmax = 470 nm assigned to the OH-adducts on the benzene ring, and a second band with λmax = 390 nm (for Q) and 370 nm (for 3-MeQ) assigned, inter alia, to the N-centered radicals on a pyrazin-2-one ring. The rate constants of the reactions of •OH with Q and 3-MeQ were found to be in the interval (5.9–9.7) × 109 M–1·s–1 and were assigned to their addition to benzene and pyrazin-2-one rings and H-abstraction from the pyrazin-2-one nitrogen. In turn, the transient absorption spectrum observed in the reaction of •N3 exhibits an absorption band with λmax = 350 nm. This absorption was assigned to the N-centered radical on the Pyr ring formed after deprotonation of the respective radical cation resulting from one-electron oxidation of 3-MeQ. The rate constant of the reaction of •N3 with 3 MeQ was found to be (6.0 ± 0.5) × 109 M–1·s–1. Oxidation of 3-MeQ by •N3 and Pyr by •OH and •N3 confirms earlier spectral assignments. With the rate constant of the •OH radical with Pyr (k = 9.2 ± 0.2) × 109 M–1·s‒1, a primary distribution of the •OH attack was estimated nearly equal between benzene and pyrazin-2-one rings.
Journal of Physical Chemistry A | 2016
Julio R. De la Fuente; Alvaro Cañete; Natalia Carathanassis; Luan Bernazar; Claudio Saitz; Dafne Díaz-Hernández
Transient intermediates were identified in the photoreduction of 3-methylquinoxalin-2-one derivatives by N-phenylglycine, NPG, and N-acetyltryptophan, NAT. For both reductants it can be postulated a sequence of reaction comprising first a photoinduced single electron transfer followed by a proton transfer from the radical cation of the electron donor to the radical anion of the 3-methylquinoxalin-2-one giving rise to the reported products. The effect of the concentrations of NPG and the quinoxalin-2-one on the rate of photoconsumption of this last were quantified, and the lifetimes of the possible intermediates estimated. In the photoreduction by NAT, processes leading to the decarboxylation of NAT and radical adduct product compete with the expected SET from the indoyl N to the excited triplet of quinoxalin-2-ones as revealed by the detection of the deprotonated N-acetyltryptophan radical [NAT-H](•). This radical is formed almost instantly after the laser pulse and has a secondary delayed growth via a delayed proton transfer from the indoyl radical cation NAT(•+) to the quinoxalin-2-one radical anions. The decarboxylation of NAT that mimics C-terminus tryptophan in proteins is biologically relevant because might cause damages at cellular and the whole organism level. As far as we know this is the first report of a radical decarboxylation of N-acetyltryptophan leading to photoproducts.
Journal of Chemical Research-s | 2008
Claudio Saitz; Julio R. De la Fuente; Carolina Jullian; Hernán Pessoa-Mahana; Carolina Olea
A novel series of calix[4]arenes bearing benzothiazole, benzoxazole, and benzoimidazole groups were obtained by the reaction of the corresponding 2-mercaptoheterocycle with 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(chloroacetamido) ethoxy]-26,28-di-hydroxycalix[4]arene and structurally characterised by IR, 1H NMR, 13C NMR, Mass spectra and elemental analyses. From their analytical data, it was found these compounds had cone conformations.