Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julius Bogomolovas is active.

Publication


Featured researches published by Julius Bogomolovas.


Circulation Research | 2009

PKC Phosphorylation of Titin's PEVK Element. A Novel and Conserved Pathway for Modulating Myocardial Stiffness

Carlos Hidalgo; Bryan D. Hudson; Julius Bogomolovas; Yi Zhu; Brian Anderson; Marion L. Greaser; Siegfried Labeit; Henk Granzier

Rationale: Protein kinase C (PKC) regulates contractility of cardiac muscle cells by phosphorylating thin- and thick- filament–based proteins. Myocardial sarcomeres also contain a third myofilament, titin, and it is unknown whether titin can be phosphorylated by PKC and whether it affects passive tension. Objective: The purpose of this study was to examine the effect of PKC on titin phosphorylation and titin-based passive tension. Methods and Results: Phosphorylation assays with PKC&agr; revealed that titin is phosphorylated in skinned myocardial tissues; this effect is exacerbated by pretreating with protein phosphatase 1. In vitro phosphorylation of recombinant protein representing titin’s spring elements showed that PKC&agr; targets the proline – glutamate – valine – lysine (PEVK) spring element. Furthermore, mass spectrometry in combination with site-directed mutagenesis identified 2 highly conserved sites in the PEVK region that are phosphorylated by PKC&agr; (S11878 and S12022); when these 2 sites are mutated to alanine, phosphorylation is effectively abolished. Mechanical experiments with skinned left ventricular myocardium revealed that PKC&agr; significantly increases titin-based passive tension, an effect that is reversed by protein phosphatase 1. Single molecule force-extension curves show that PKC&agr; decreases the PEVK persistence length (from 1.20 nm to 0.55 nm), without altering the contour length, and using a serially-linked wormlike chain model we show that this increases titin-based passive force with a sarcomere length dependence that is similar to that measured in skinned myocardium after PKC&agr; phosphorylation. Conclusions: PKC phosphorylation of titin is a novel and conserved pathway that links myocardial signaling and myocardial stiffness.


Circulation | 2011

Genetic Variation in Titin in Arrhythmogenic Right Ventricular Cardiomyopathy–Overlap Syndromes

Matthew R.G. Taylor; Sharon Graw; Gianfranco Sinagra; Carl Barnes; Dobromir Slavov; Francesca Brun; Bruno Pinamonti; Ernesto Salcedo; William H. Sauer; Stylianos A. Pyxaras; Brian Anderson; Bernd Simon; Julius Bogomolovas; Siegfried Labeit; Henk Granzier; Luisa Mestroni

Background— Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited genetic myocardial disease characterized by fibrofatty replacement of the myocardium and a predisposition to cardiac arrhythmias and sudden death. We evaluated the cardiomyopathy gene titin (TTN) as a candidate ARVC gene because of its proximity to an ARVC locus at position 2q32 and the connection of the titin protein to the transitional junction at intercalated disks. Methods and Results— All 312 titin exons known to be expressed in human cardiac titin and the complete 3′ untranslated region were sequenced in 38 ARVC families. Eight unique TTN variants were detected in 7 families, including a prominent Thr2896Ile mutation that showed complete segregation with the ARVC phenotype in 1 large family. The Thr2896IIe mutation maps within a highly conserved immunoglobulin-like fold (Ig10 domain) located in the spring region of titin. Native gel electrophoresis, nuclear magnetic resonance, intrinsic fluorescence, and proteolysis assays of wild-type and mutant Ig10 domains revealed that the Thr2896IIe exchange reduces the structural stability and increases the propensity for degradation of the Ig10 domain. The phenotype of TTN variant carriers was characterized by a history of sudden death (5 of 7 families), progressive myocardial dysfunction causing death or heart transplantation (8 of 14 cases), frequent conduction disease (11 of 14), and incomplete penetrance (86%). Conclusions— Our data provide evidence that titin mutations can cause ARVC, a finding that further expands the origin of the disease beyond desmosomal proteins. Structural impairment of the titin spring is a likely cause of ARVC and constitutes a novel mechanism underlying myocardial remodeling and sudden cardiac death.Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited genetic myocardial disease characterized by fibrofatty replacement of the myocardium and a predisposition to cardiac arrhythmias and sudden death. We evaluated the cardiomyopathy gene titin (TTN) as a candidate ARVC gene because of its proximity to an ARVC locus at position 2q32 and the connection of the titin protein to the transitional junction at intercalated disks.


Protein Expression and Purification | 2009

Screening of fusion partners for high yield expression and purification of bioactive viscotoxins

Julius Bogomolovas; Bernd Simon; Michael Sattler; Gunter Stier

Viscotoxins are small cationic proteins found in European mistletoe Viscum album. They are highly toxic towards phytopathogenic fungi and cancer cells. Heterologous expression of viscotoxins would broaden the spectrum of methods to be applied for better understanding of their structure and function and satisfy possible biopharmaceutical needs. Here, we evaluated 13 different proteins as a fusion partners for expression in Escherichia coli cells: His6 tag and His6-tagged versions of GB1, ZZ tag, Z tag, maltose binding protein, NusA, glutathione S-transferase, thioredoxin, green fluorescent protein, as well as periplasmic and cytosolic versions of DsbC and DsbA. The fusion to thioredoxin gave the highest yield of soluble viscotoxin. The His6-tagged fusion protein was captured with Ni(2+) affinity chromatography, subsequently cleaved with tobacco etch virus protease. Selective precipitation by acidification of the cleavage mixture was followed by cation exchange chromatography. This protocol yielded 5.2mg of visctoxin A3 from 1l of culture medium corresponding to a recovery rate of 68%. Mass spectrometry showed a high purity of the sample and the presence of three disulfide bridges in the recombinant viscotoxin. Proper folding of the protein was confirmed by heteronuclear NMR spectra recorded on a uniformly 15N-labeled sample. Recombinant viscotoxins prepared using this protocol are toxic to HeLa cells and preserve the activity differences between isoforms B and A3 found in native proteins.


Journal of Clinical Investigation | 2010

Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy

Koichi Ojima; Yukiko Kawabata; Harumi Nakao; Kazuki Nakao; Naoko Doi; Fujiko Kitamura; Yasuko Ono; Shoji Hata; Hidenori Suzuki; Hiroyuki Kawahara; Julius Bogomolovas; Christian Witt; Coen A.C. Ottenheijm; Siegfried Labeit; Henk Granzier; Noriko Toyama-Sorimachi; Michiko Sorimachi; Koichi Suzuki; Tatsuya Maeda; Keiko Abe; Atsu Aiba; Hiroyuki Sorimachi

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a genetic disease that is caused by mutations in the calpain 3 gene (CAPN3), which encodes the skeletal muscle-specific calpain, calpain 3 (also known as p94). However, the precise mechanism by which p94 functions in the pathogenesis of this disease remains unclear. Here, using p94 knockin mice (termed herein p94KI mice) in which endogenous p94 was replaced with a proteolytically inactive but structurally intact p94:C129S mutant protein, we have demonstrated that stretch-dependent p94 distribution in sarcomeres plays a crucial role in the pathogenesis of LGMD2A. The p94KI mice developed a progressive muscular dystrophy, which was exacerbated by exercise. The exercise-induced muscle degeneration in p94KI mice was associated with an inefficient redistribution of p94:C129S in stretched sarcomeres. Furthermore, the p94KI mice showed impaired adaptation to physical stress, which was accompanied by compromised upregulation of muscle ankyrin-repeat protein-2 and hsp upon exercise. These findings indicate that the stretch-induced dynamic redistribution of p94 is dependent on its protease activity and essential to protect muscle from degeneration, particularly under conditions of physical stress. Furthermore, our data provide direct evidence that loss of p94 protease activity can result in LGMD2A and molecular insight into how this could occur.


Journal of Structural Biology | 2010

MuRF1 is a muscle fiber-type II associated factor and together with MuRF2 regulates type-II fiber trophicity and maintenance.

Anselmo S. Moriscot; Igor L. Baptista; Julius Bogomolovas; Christian Witt; Stephanie Hirner; Henk Granzier; Siegfried Labeit

MuRF1 is a member of the RBCC (RING, B-box, coiled-coil) superfamily that has been proposed to act as an atrogin during muscle wasting. Here, we show that MuRF1 is preferentially induced in type-II muscle fibers after denervation. Fourteen days after denervation, MuRF1 protein was further elevated but remained preferentially expressed in type-II muscle fibers. Consistent with a fiber-type dependent function of MuRF1, the tibialis anterior muscle (rich in type-II muscle fibers) was considerably more protected in MuRF1-KO mice from muscle wasting when compared to soleus muscle with mixed fiber-types. We also determined fiber-type distributions in MuRF1/MuRF2 double-deficient KO (dKO) mice, because MuRF2 is a close homolog of MuRF1. MuRF1/MuRF2 dKO mice showed a profound loss of type-II fibers in soleus muscle. As a potential mechanism we identified the interaction of MuRF1/MuRF2 with myozenin-1, a calcineurin/NFAT regulator and a factor required for maintenance of type-II muscle fibers. MuRF1/MuRF2 dKO mice had lost myozenin-1 expression in tibialis anterior muscle, implicating MuRF1/MuRF2 as regulators of the calcineurin/NFAT pathway. In summary, our data suggest that expression of MuRF1 is required for remodeling of type-II fibers under pathophysiological stress states, whereas MuRF1 and MuRF2 together are required for maintenance of type-II fibers, possibly via the regulation of myozenin-1.


Journal of Biological Chemistry | 2009

Single Molecule Force Spectroscopy of the Cardiac Titin N2B Element: EFFECTS OF THE MOLECULAR CHAPERONE αB-CRYSTALLIN WITH DISEASE-CAUSING MUTATIONS*

Yi Zhu; Julius Bogomolovas; Siegfried Labeit; Henk Granzier

The small heat shock protein αB-crystallin interacts with N2B-Us, a large unique sequence found in the N2B element of cardiac titin. Using single molecule force spectroscopy, we studied the effect of αB-crystallin on the N2B-Us and its flanking Ig-like domains. Ig domains from the proximal tandem Ig segment of titin were also studied. The effect of wild type αB-crystallin on the single molecule force-extension curve was determined as well as that of mutant αB-crystallins harboring the dilated cardiomyopathy missense mutation, R157H, or the desmin-related myopathy mutation, R120G. Results revealed that wild type αB-crystallin decreased the persistence length of the N2B-Us (from ∼0.7 to ∼0.2 nm) but did not alter its contour length. αB-crystallin also increased the unfolding force of the Ig domains that flank the N2B-Us (by 51 ± 3 piconewtons); the rate constant of unfolding at zero force was estimated to be ∼17-fold lower in the presence of αB-crystallin (1.4 × 10-4 s-1 versus 2.4 × 10-3 s-1). We also found that αB-crystallin increased the unfolding force of Ig domains from the proximal tandem Ig segment by 28 ± 6 piconewtons. The effects of αB-crystallin were attenuated by the R157H mutation (but were still significant) and were absent when using the R120G mutant. We conclude that αB-crystallin protects titin from damage by lowering the persistence length of the N2B-Us and reducing the Ig domain unfolding probability. Our finding that this effect is either attenuated (R157H) or lost (R120G) in disease causing αB-crystallin mutations suggests that the interaction between αB-crystallin and titin is important for normal heart function.


Journal of Structural Biology | 2010

The effects of PKCα phosphorylation on the extensibility of titin's PEVK element

Brian R. Anderson; Julius Bogomolovas; Siegfried Labeit; Henk Granzier

Post-translational modifications, along with isoform splicing, of titin determine the passive tension development of stretched sarcomeres. It was recently shown that PKCalpha phosphorylates two highly-conserved residues (S26 and S170) of the PEVK region in cardiac titin, resulting in passive tension increase. To determine how each phosphorylated residue affects myocardial stiffness, we generated three recombinant mutant PEVK fragments (S26A, S170A and S170A/S26A), each flanked by Ig domains. Single-molecule force spectroscopy shows that PKCalpha decreases the PEVK persistence length (from 0.99 to 0.68 nm); the majority of this decrease is attributable to phosphorylation of S26. Before PKCalpha, all three mutant PEVK fragments showed at least 40% decrease in persistence length compared to wildtype. Furthermore, Ig domain unfolding force measurements indicate that PEVKs flanking Ig domains are relatively unstable compared to other titin Ig domains. We conclude that phosphorylation of S26 is the primary mechanism through which PKCalpha modulates cardiac stiffness.


BioMed Research International | 2011

Titin-actin interaction: PEVK-actin-based viscosity in a large animal.

Charles S. Chung; Julius Bogomolovas; Alexander Gasch; Carlos Hidalgo; Siegfried Labeit; Henk Granzier

Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0) than mice (N2BA:N2B ratio ~0.2). To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL) to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL “overshoot” at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase

E. von Castelmur; Johan Strümpfer; Barbara Franke; Julius Bogomolovas; Sonia Barbieri; Hiroshi Qadota; Petr V. Konarev; Dmitri I. Svergun; Siegfried Labeit; Guy M. Benian; Klaus Schulten; Olga Mayans

Titin-like kinases are an important class of cytoskeletal kinases that intervene in the response of muscle to mechanical stimulation, being central to myofibril homeostasis and development. These kinases exist in autoinhibited states and, allegedly, become activated during muscle activity by the elastic unfolding of a C-terminal regulatory segment (CRD). However, this mechano-activation model remains controversial. Here we explore the structural, catalytic, and tensile properties of the multidomain kinase region of Caenorhabditis elegans twitchin (Fn31-Nlinker-kinase-CRD-Ig26) using X-ray crystallography, small angle X-ray scattering, molecular dynamics simulations, and catalytic assays. This work uncovers the existence of an inhibitory segment that flanks the kinase N-terminally (N-linker) and that acts synergistically with the canonical CRD tail to silence catalysis. The N-linker region has high mechanical lability and acts as the primary stretch-sensor in twitchin kinase, while the CRD is poorly responsive to pulling forces. This poor response suggests that the CRD is not a generic mechanosensor in this kinase family. Instead, the CRD is shown here to be permissive to catalysis and might protect the kinase active site against mechanical damage. Thus, we put forward a regulatory model where kinase inhibition results from the combined action of both N- and C-terminal tails, but only the N-terminal extension undergoes mechanical removal, thereby affording partial activation. Further, we compare invertebrate and vertebrate titin-like kinases and identify variations in the regulatory segments that suggest a mechanical speciation of these kinase classes.


Journal of Biological Chemistry | 2013

Single molecule force spectroscopy on titin implicates immunoglobulin domain stability as a cardiac disease mechanism

Brian R. Anderson; Julius Bogomolovas; Siegfried Labeit; Henk Granzier

Background: A mutation found in titin has been linked to arrhythmogenic cardiomyopathy (AC). Results: The mutation increases Ig10 instability and susceptibility to degradation. Conclusion: The mutation compromises the local structure of Ig10 and has a significant effect on Ig10 unfolding dynamics. Significance: Titin is the first sarcomeric protein to be implicated in AC pathology; a novel titin-based disease mechanism is suggested. Titin plays crucial roles in sarcomere organization and cardiac elasticity by acting as an intrasarcomeric molecular spring. A mutation in the tenth Ig-like domain of titins spring region is associated with arrhythmogenic cardiomyopathy, a disease characterized by ventricular arrhythmias leading to cardiac arrest and sudden death. Titin is the first sarcomeric protein linked to arrhythmogenic cardiomyopathy. To characterize the disease mechanism, we have used atomic force microscopy to directly measure the effects that the disease-linked point mutation (T16I) has on the mechanical and kinetic stability of Ig10 at the single molecule level. The mutation decreases the force needed to unfold Ig10 and increases its rate of unfolding 4-fold. We also found that T16I Ig10 is more prone to degradation, presumably due to compromised local protein structure. Overall, the disease-linked mutation weakens the structural integrity of titins Ig10 domain and suggests an Ig domain disease mechanism.

Collaboration


Dive into the Julius Bogomolovas's collaboration.

Top Co-Authors

Avatar

Siegfried Labeit

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Siegfried Labeit

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Simon

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge