Julius Kostan
Max F. Perutz Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julius Kostan.
Eukaryotic Cell | 2013
Brooke Morriswood; Katharina Havlicek; Lars Demmel; Sevil Yavuz; Marco Sealey-Cardona; Keni Vidilaseris; Dorothea Anrather; Julius Kostan; Kristina Djinović-Carugo; Kyle J. Roux; Graham Warren
ABSTRACT The trypanosomes are a family of parasitic protists of which the African trypanosome, Trypanosoma brucei, is the best characterized. The complex and highly ordered cytoskeleton of T. brucei has been shown to play vital roles in its biology but remains difficult to study, in large part owing to the intractability of its constituent proteins. Existing methods of protein identification, such as bioinformatic analysis, generation of monoclonal antibody panels, proteomics, affinity purification, and yeast two-hybrid screens, all have drawbacks. Such deficiencies—troublesome proteins and technical limitations—are common not only to T. brucei but also to many other protists, many of which are even less well studied. Proximity-dependent biotin identification (BioID) is a recently developed technique that allows forward screens for interaction partners and near neighbors in a native environment with no requirement for solubility in nonionic detergent. As such, it is extremely well suited to the exploration of the cytoskeleton. In this project, BioID was adapted for use in T. brucei. The trypanosome bilobe, a discrete cytoskeletal structure with few known protein components, represented an excellent test subject. Use of the bilobe protein TbMORN1 as a probe resulted in the identification of seven new bilobe constituents and two new flagellum attachment zone proteins. This constitutes the first usage of BioID on a largely uncharacterized structure, and demonstrates its utility in identifying new components of such a structure. This remarkable success validates BioID as a new tool for the study of unicellular eukaryotes in particular and the eukaryotic cytoskeleton in general.
Nature Cell Biology | 2007
Heike Stroissnigg; Alžbeta Trančíková; Luise Descovich; Jakob Fuhrmann; Waltraud Kutschera; Julius Kostan; Arabella Meixner; Fatiha Nothias; Friedrich Propst
Treatment of cultured vertebrate neurons with nitric oxide leads to growth-cone collapse, axon retraction and the reconfiguration of axonal microtubules. We show that the light chain of microtubule-associated protein (MAP) 1B is a substrate for S-nitrosylation in vivo, in cultured cells and in vitro. S-nitrosylation occurs at Cys 2457 in the COOH terminus. Nitrosylation of MAP1B leads to enhanced interaction with microtubules and correlates with the inhibition of neuroblastoma cell differentiation. We further show, in dorsal root ganglion neurons, that MAP1B is necessary for neuronal nitric oxide synthase control of growth-cone size, growth-cone collapse and axon retraction. These results reveal an S-nitrosylation-dependent signal-transduction pathway that is involved in regulation of the axonal cytoskeleton and identify MAP1B as a major component of this pathway. We propose that MAP1B acts by inhibiting a microtubule- and dynein-based mechanism that normally prevents axon retraction.
Journal of Bacteriology | 2011
Georg Mlynek; Björn Sjöblom; Julius Kostan; Stephanie Füreder; Frank Maixner; Kira Gysel; Paul G. Furtmüller; Christian Obinger; Michael Wagner; Holger Daims; Kristina Djinović-Carugo
Chlorite dismutase (Cld) is a unique heme enzyme catalyzing the conversion of ClO(2)(-) to Cl(-) and O(2). Cld is usually found in perchlorate- or chlorate-reducing bacteria but was also recently identified in a nitrite-oxidizing bacterium of the genus Nitrospira. Here we characterized a novel Cld-like protein from the chemolithoautotrophic nitrite oxidizer Nitrobacter winogradskyi which is significantly smaller than all previously known chlorite dismutases. Its three-dimensional (3D) crystal structure revealed a dimer of two identical subunits, which sharply contrasts with the penta- or hexameric structures of other chlorite dismutases. Despite a truncated N-terminal domain in each subunit, this novel enzyme turned out to be a highly efficient chlorite dismutase (K(m) = 90 μM; k(cat) = 190 s(-1); k(cat)/K(m) = 2.1 × 10(6) M(-1) s(-1)), demonstrating a greater structural and phylogenetic diversity of these enzymes than was previously known. Based on comparative analyses of Cld sequences and 3D structures, signature amino acid residues that can be employed to assess whether uncharacterized Cld-like proteins may have a high chlorite-dismutating activity were identified. Interestingly, proteins that contain all these signatures and are phylogenetically closely related to the novel-type Cld of N. winogradskyi exist in a large number of other microbes, including other nitrite oxidizers.
Journal of Structural Biology | 2010
Julius Kostan; Björn Sjöblom; Frank Maixner; Georg Mlynek; Paul G. Furtmüller; Christian Obinger; Michael Wagner; Holger Daims; Kristina Djinović-Carugo
Chlorite dismutase (Cld) is a unique heme enzyme which transforms chlorite to chloride and molecular oxygen (reaction: ClO(2)(-)→Cl(-)+O(2)). Since bacteria with Cld play significant roles in the bioremediation of industrially contaminated sites and also in wastewater treatment, it is of high interest to understand the molecular mechanism of chlorite detoxification. Here we investigate a highly active Cld from Candidatus Nitrospira defluvii (NdCld), a key nitrifier in biological wastewater treatment, using a comprehensive structural, biochemical and bioinformatics approach. We determined the crystal structure of Cld from Candidatus Nitrospira defluvii and showed that functional NdCld is a homopentamer possessing a fold found in other Clds and Cld-like enzymes. To investigate the Cld function in more detail, site-directed mutagenesis of a catalytically important residue (Arg173) was performed and two enzyme mutants were structurally and biochemically characterized. Arginine 173 is demonstrated to play a key role in (i) controlling of ligand and substrate access and binding and (ii) in chlorite dismutation reaction. The flexible residue modulates the electrostatic potential and size of the active site entrance and might be involved in keeping transiently formed hypochlorite in place for final molecular oxygen and chloride formation. Furthermore, using a structure-based sequence alignment, we show that the residue corresponding to Arg173 is conserved in all known active forms of Cld and propose it as a marker for Cld activity in yet uncharacterized Cld-like proteins. Finally, our analysis indicates that all Clds and Cld-like enzymes employ a non-covalently bound heme as a cofactor.
Journal of Biological Chemistry | 2009
Julius Kostan; Martin Gregor; Gernot Walko; Gerhard Wiche
The detachment of epithelial cells from the basal matrix during wound healing and differentiation of keratinocytes requires the disassembly of the hemidesmosomal multiprotein adhesion complex. Integrin α6β4-plectin interaction plays a major role in the formation of hemidesmosomes, and thus the mechanisms regulating this interaction should be critical also for the disassembly process. Here we show that a particular plectin isoform (1a) interacts with the Ca2+-sensing protein calmodulin in a Ca2+-dependent manner. As a result of this interaction, binding of the hemidesmosome-associated plectin isoform 1a to integrin β4 is substantially diminished. Calmodulin-binding inhibits also the interaction of plectin with F-actin. Further, we found that, during Ca2+-induced keratinocyte differentiation, plectin 1a is first relocated within the cell and later down-regulated, suggesting that Ca2+ affects the fate of plectin 1a upon its release from hemidesmosomes. We propose a novel model for the disassembly of hemidesmosomes during keratinocyte differentiation, where both, binding of calmodulin to plectin 1a and phosphorylation of integrin β4 by protein kinases, are required for disruption of the integrin α6β4-plectin complex.
EMBO Reports | 2014
Julius Kostan; Ulrich Salzer; Albina Orlova; Imre Törö; Vesna Hodnik; Yosuke Senju; Juan Zou; Claudia Schreiner; Julia Steiner; Jari Meriläinen; Marko Nikki; Ismo Virtanen; Oliviero Carugo; Juri Rappsilber; Pekka Lappalainen; Veli-Pekka Lehto; Gregor Anderluh; Edward H. Egelman; Kristina Djinović-Carugo
Two mechanisms have emerged as major regulators of membrane shape: BAR domain‐containing proteins, which induce invaginations and protrusions, and nuclear promoting factors, which cause generation of branched actin filaments that exert mechanical forces on membranes. While a large body of information exists on interactions of BAR proteins with membranes and regulatory proteins of the cytoskeleton, little is known about connections between these two processes. Here, we show that the F‐BAR domain protein pacsin2 is able to associate with actin filaments using the same concave surface employed to bind to membranes, while some other tested N‐BAR and F‐BAR proteins (endophilin, CIP4 and FCHO2) do not associate with actin. This finding reveals a new level of complexity in membrane remodeling processes.
Biochimica et Biophysica Acta | 2012
Stefan Hofbauer; Kira Gysel; Georg Mlynek; Julius Kostan; Andreas Hagmüller; Holger Daims; Paul G. Furtmüller; Kristina Djinović-Carugo; Christian Obinger
Chlorite dismutases (Cld) are unique heme b containing oxidoreductases that convert chlorite to chloride and dioxygen. Recent phylogenetic and structural analyses demonstrated that these metalloproteins significantly differ in oligomeric and subunit structure. Here we have analyzed two representatives of two phylogenetically separated lineages, namely pentameric Cld from Candidatus “Nitrospira defluvii” and dimeric Cld from Nitrobacter winogradskyi having a similar enzymatic activity at room temperature. By application of a broad set of techniques including differential scanning calorimetry, electronic circular dichroism, UV–vis and fluorescence spectroscopy the temperature-mediated and chemical unfolding of both recombinant proteins were analyzed. Significant differences in thermal and conformational stability are reported. The pentameric enzyme is very stable between pH 3 and 10 (Tm = 92 °C at pH 7.0) and active at high temperatures thus being an interesting candidate for bioremediation of chlorite. By contrast the dimeric protein starts to unfold already at 53 °C. The observed unfolding pathways are discussed with respect to the known subunit structure and subunit interaction.
Biochemistry | 2014
Stefan Hofbauer; Kira Gysel; Marzia Bellei; Andreas Hagmüller; Irene Schaffner; Georg Mlynek; Julius Kostan; Katharina F. Pirker; Holger Daims; Paul G. Furtmüller; Gianantonio Battistuzzi; Kristina Djinović-Carugo; Christian Obinger
Chlorite dismutases (Clds) are heme b containing oxidoreductases that convert chlorite to chloride and molecular oxygen. In order to elucidate the role of conserved heme cavity residues in the catalysis of this reaction comprehensive mutational and biochemical analyses of Cld from “Candidatus Nitrospira defluvii” (NdCld) were performed. Particularly, point mutations of the cavity-forming residues R173, K141, W145, W146, and E210 were performed. The effect of manipulation in 12 single and double mutants was probed by UV–vis spectroscopy, spectroelectrochemistry, pre-steady-state and steady-state kinetics, and X-ray crystallography. Resulting biochemical data are discussed with respect to the known crystal structure of wild-type NdCld and the variants R173A and R173K as well as the structures of R173E, W145V, W145F, and the R173Q/W146Y solved in this work. The findings allow a critical analysis of the role of these heme cavity residues in the reaction mechanism of chlorite degradation that is proposed to involve hypohalous acid as transient intermediate and formation of an O=O bond. The distal R173 is shown to be important (but not fully essential) for the reaction with chlorite, and, upon addition of cyanide, it acts as a proton acceptor in the formation of the resulting low-spin complex. The proximal H-bonding network including K141-E210-H160 keeps the enzyme in its ferric (E°′ = −113 mV) and mainly five-coordinated high-spin state and is very susceptible to perturbation.
Biochemistry | 2012
Stefan Hofbauer; Marzia Bellei; Axel Sündermann; Katharina F. Pirker; Andreas Hagmüller; Georg Mlynek; Julius Kostan; Holger Daims; Paul G. Furtmüller; Kristina Djinović-Carugo; Chris Oostenbrink; Gianantonio Battistuzzi; Christian Obinger
Chlorite dismutases (Clds) are heme b-containing oxidoreductases that convert chlorite to chloride and dioxygen. In this work, the thermodynamics of the one-electron reduction of the ferric high-spin forms and of the six-coordinate low-spin cyanide adducts of the enzymes from Nitrobacter winogradskyi (NwCld) and Candidatus “Nitrospira defluvii” (NdCld) were determined through spectroelectrochemical experiments. These proteins belong to two phylogenetically separated lineages that differ in subunit (21.5 and 26 kDa, respectively) and oligomeric (dimeric and pentameric, respectively) structure but exhibit similar chlorite degradation activity. The E°′ values for free and cyanide-bound proteins were determined to be −119 and −397 mV for NwCld and −113 and −404 mV for NdCld, respectively (pH 7.0, 25 °C). Variable-temperature spectroelectrochemical experiments revealed that the oxidized state of both proteins is enthalpically stabilized. Molecular dynamics simulations suggest that changes in the protein structure are negligible, whereas solvent reorganization is mainly responsible for the increase in entropy during the redox reaction. Obtained data are discussed with respect to the known structures of the two Clds and the proposed reaction mechanism.
Structure | 2015
Jae-Geun Song; Julius Kostan; Friedel Drepper; Bettina Knapp; Euripedes de Almeida Ribeiro; Petr V. Konarev; Irina Grishkovskaya; Gerhard Wiche; Martin Gregor; Dmitri I. Svergun; Bettina Warscheid; Kristina Djinović-Carugo
Summary The mechanical stability of epithelial cells, which protect organisms from harmful external factors, is maintained by hemidesmosomes via the interaction between plectin 1a (P1a) and integrin α6β4. Binding of calcium-calmodulin (Ca2+-CaM) to P1a together with phosphorylation of integrin β4 disrupts this complex, resulting in disassembly of hemidesmosomes. We present structures of the P1a actin binding domain either in complex with the N-ter lobe of Ca2+-CaM or with the first pair of integrin β4 fibronectin domains. Ca2+-CaM binds to the N-ter isoform-specific tail of P1a in a unique manner, via its N-ter lobe in an extended conformation. Structural, cell biology, and biochemical studies suggest the following model: binding of Ca2+-CaM to an intrinsically disordered N-ter segment of plectin converts it to an α helix, which repositions calmodulin to displace integrin β4 by steric repulsion. This model could serve as a blueprint for studies aimed at understanding how Ca2+-CaM or EF-hand motifs regulate F-actin-based cytoskeleton.