Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julius M. Guccione is active.

Publication


Featured researches published by Julius M. Guccione.


Journal of Biomechanical Engineering-transactions of The Asme | 1991

Passive material properties of intact ventricular myocardium determined from a cylindrical model

Julius M. Guccione; Andrew D. McCulloch; L. K. Waldman

The equatorial region of the canine left ventricle was modeled as a thick-walled cylinder consisting of an incompressible hyperelastic material with homogeneous exponential properties. The anisotropic properties of the passive myocardium were assumed to be locally transversely isotropic with respect to a fiber axis whose orientation varied linearly across the wall. Simultaneous inflation, extension, and torsion were applied to the cylinder to produce epicardial strains that were measured previously in the potassium-arrested dog heart. Residual stress in the unloaded state was included by considering the stress-free configuration to be a warped cylindrical arc. In the special case of isotropic material properties, torsion and residual stress both significantly reduced the high circumferential stress peaks predicted at the endocardium by previous models. However, a resultant axial force and moment were necessary to cause the observed epicardial deformations. Therefore, the anisotropic material parameters were found that minimized these resultants and allowed the prescribed displacements to occur subject to the known ventricular pressure loads. The global minimum solution of this parameter optimization problem indicated that the stiffness of passive myocardium (defined for a 20 percent equibiaxial extension) would be 2.4 to 6.6 times greater in the fiber direction than in the transverse plane for a broad range of assumed fiber angle distributions and residual stresses. This agrees with the results of biaxial tissue testing. The predicted transmural distributions of fiber stress were relatively flat with slight peaks in the subepicardium, and the fiber strain profiles agreed closely with experimentally observed sarcomere length distributions. The results indicate that torsion, residual stress and material anisotropy associated with the fiber architecture all can act to reduce endocardial stress gradients in the passive left ventricle.


Journal of Biomechanics | 1995

Finite element stress analysis of left ventricular mechanics in the beating dog heart

Julius M. Guccione; Kevin D. Costa; Andrew D. McCulloch

A three-dimensional finite element model was used to explore whether or not transmural distributions of end-diastolic and end-systolic fiber stress are uniform from the apex to the base of the canine left ventricular wall. An elastance model for active fiber stress was incorporated in an axisymmetric model that accurately represented the geometry and fiber angle distribution of the anterior free wall. The nonlinear constitutive equation for the resting myocardium was transversely isotropic with respect to the local fiber axis. Transmural distributions of end-diastolic fiber stress became increasingly nonuniform from midventricle toward the apex or the base. At a typical diastolic left ventricular pressure (1 kPa), the differences between largest and smallest fiber stresses were only 0.5 kPa near midventricle, compared with 4.6 kPa at the apex, and 3.3 kPa at the base. Transmural fiber stress differences at end-systole (14 kPa) were relatively small in regions from the base to the midventricle (13-22 kPa), but were larger between midventricle and the apex (30-43 kPa). All six three-dimensional end-diastolic strain components were within or very close to one standard deviation of published measurements through the midanterior left ventricular free wall of the passive canine heart [Omens et al., Am. J. Physiol. 261, H918-H928 (1991)]. End-systolic in-plane normal and shear strains also agreed closely with published experimental measurements in the beating dog heart [Waldman et al., Circ. Res. 63, 550-562 (1988)]. The results indicate that, unlike in the midventricle region that has been studied most fully, there may be significant regional nonhomogeneity of fiber stress in the normal left ventricle associated with regional variations in shape and fiber angle.


Circulation | 2006

Theoretical Impact of the Injection of Material Into the Myocardium A Finite Element Model Simulation

Samuel T. Wall; Joseph C. Walker; Kevin E. Healy; Mark B. Ratcliffe; Julius M. Guccione

Background— To treat cardiac injuries created by myocardial infarcts, current approaches seek to add cells and/or synthetic extracellular matrices to the damaged ventricle to restore function. Because definitive myocardial regeneration remains undemonstrated, we propose that cardiac changes observed from implanted materials may result from altered mechanisms of the ventricle. Methods and Results— We exploited a validated finite element model of an ovine left ventricle with an anteroapical infarct to examine the short-term effect of injecting material to the left ventricular wall. The models mesh and regional material properties were modified to simulate expected changes. Three sets of simulations were run: (1) single injection to the anterior border zone; (2) therapeutic multiple border zone injections; and (3) injection of material to the infarct region. Results indicate that additions to the border zone decrease end-systolic fiber stress proportionally to the fractional volume added, with stiffer materials improving this attenuation. As a potential therapy, small changes in wall volume (≈4.5%) reduce elevated border zone fiber stresses from mean end-systole levels of 28.2 kPa (control) to 23.3 kPa (treatment), similar to levels of 22.5 kPA computed in remote regions. In the infarct, injection improves ejection fraction and the stroke volume/end-diastolic volume relationship but has no effect on the stroke volume/end-diastolic pressure relationship. Conclusions— Simulations indicate that the addition of noncontractile material to a damaged left ventricular wall has important effects on cardiac mechanics, with potentially beneficial reduction of elevated myofiber stresses, as well as confounding changes to clinical left ventricular metrics.


Journal of Biomechanical Engineering-transactions of The Asme | 1996

A three-dimensional finite element method for large elastic deformations of ventricular myocardium : II-prolate spheroidal coordinates

Kevin D. Costa; Peter Hunter; J. S. Wayne; L. K. Waldman; Julius M. Guccione; Andrew D. McCulloch

A three-dimensional finite element method for nonlinear finite elasticity is presented using prolate spheroidal coordinates. For a thick-walled ellipsoidal model of passive anisotropic left ventricle, a high-order (cubic Hermite) mesh with 3 elements gave accurate continuous stresses and strains, with a 69 percent savings in degrees of freedom (dof) versus a 70-element standard low-order model. A custom mixed-order model offered 55 percent savings in dof and 39 percent savings in solution time compared with the low-order model. A nonsymmetric 3D model of the passive canine LV was solved using 16 high-order elements. Continuous nonhomogeneous stresses and strains were obtained within 1 hour on a laboratory workstation, with an estimated solution time of less than 4 hours to model end-systole. This method represents the first practical opportunity to solve large-scale anatomically detailed models for cardiac stress analysis.


The Annals of Thoracic Surgery | 2001

Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study

Julius M. Guccione; Scott M. Moonly; Pavlos Moustakidis; Kevin D. Costa; Michael J. Moulton; Mark B. Ratcliffe; Michael K. Pasque

BACKGROUND The global left ventricular dysfunction characteristic of left ventricular aneurysm is associated with muscle fiber stretching in the adjacent noninfarcted (border zone) region during isovolumic systole. The mechanism of this regional dysfunction is poorly understood. METHODS An anteroapical transmural myocardial infarct was created by coronary arterial ligation in an adult Dorset sheep and was allowed to mature into left ventricular aneurysm for 10 weeks. The animal was imaged subsequently using magnetic resonance imaging with simultaneous recording of intraventricular pressures. A realistic mathematical model of the three-dimensional ovine left ventricle with an anteroapical aneurysm was constructed from multiple short-axis and long-axis magnetic resonance imaging slices at the beginning of diastolic filling. RESULTS Three model simulations are presented: (1) normal border zone contractility and normal aneurysmal material properties; (2) greatly reduced border zone contractility (by 50%) and normal aneurysmal material properties; and (3) greatly reduced border zone contractility (by 50%) and stiffened aneurysmal material properties (by 1000%). Only the latter two simulations were able to reproduce experimentally observed stretching of border zone fibers during isovolumic systole. CONCLUSIONS The mechanism underlying mechanical dysfunction in the border zone region of left ventricular aneurysm is primarily the result of myocardial contractile dysfunction rather than increased wall stress in this region.


Journal of Biomechanical Engineering-transactions of The Asme | 1993

Mechanics of Active Contraction in Cardiac Muscle: Part I—Constitutive Relations for Fiber Stress That Describe Deactivation

Julius M. Guccione; Andrew D. McCulloch

Constitutive relations for active fiber stress in cardiac muscle are proposed and parameters are found that allow these relations to fit experimental data from the literature, including the tension redeveloped following rapid deactivating length perturbations. Contraction is driven by a length-independent free calcium transient. The number of actin sites available to react with myosin is determined from the total number of actin sites (available and inhibited), free calcium and the length history-dependent association and dissociation rates of two Ca2+ ions and troponin as governed by a first-order, classical kinetics, differential equation. Finally, the relationship between active tension and the number of available actin sites is described by a general cross-bridge model. Bridges attach in a single configuration at a constant rate, the force within each cross-bridge varies linearly with position, and the rate constant of bridge detachment depends both on position and time after onset of contraction. In Part II, these constitutive relations for active stress are incorporated in a continuum mechanics model of the left ventricle that predicted end-systolic transmural strain distributions as observed experimentally.


Journal of Biomechanical Engineering-transactions of The Asme | 1996

A Three-Dimensional Finite Element Method for Large Elastic Deformations of Ventricular Myocardium: I—Cylindrical and Spherical Polar Coordinates

Kevin D. Costa; Peter Hunter; Jack M. Rogers; Julius M. Guccione; L. K. Waldman; Andrew D. McCulloch

A three-dimensional Galerkin finite element method was developed for large deformations of ventricular myocardium and other incompressible, nonlinear elastic, anisotropic materials. Cylindrical and spherical elements were used to solve axisymmetric problems with r.m.s. errors typically less than 2 percent. Isochoric interpolation and pressure boundary constraint equations enhanced low-order curvilinear elements under special circumstances (69 percent savings in degrees of freedom, 78 percent savings in solution time for inflation of a thick-walled cylinder). Generalized tensor products of linear Lagrange and cubic Hermite polynomials permitted custom elements with improved performance, including 52 percent savings in degrees of freedom and 66 percent savings in solution time for compression of a circular disk. Such computational efficiencies become significant for large scale problems such as modeling the heart.


The Annals of Thoracic Surgery | 2010

First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation

Jonathan F. Wenk; Zhihong Zhang; Guangming Cheng; Deepak Malhotra; Gabriel Acevedo-Bolton; Mike Burger; Takamaro Suzuki; David Saloner; Arthur W. Wallace; Julius M. Guccione; Mark B. Ratcliffe

BACKGROUND Left ventricular remodeling after posterobasal myocardial infarction can lead to ischemic mitral regurgitation. This occurs as a consequence of leaflet tethering due to posterior papillary muscle displacement. METHODS A finite element model of the left ventricle, mitral apparatus, and chordae tendineae was created from magnetic resonance images from a sheep that developed moderate mitral regurgitation after posterobasal myocardial infarction. Each region of the model was characterized by a specific constitutive law that captured the material response when subjected to physiologic pressure loading. RESULTS The model simulation produced a gap between the posterior and anterior leaflets, just above the infarcted posterior papillary muscle, which is indicative of mitral regurgitation. When the stiffness of the infarct region was reduced, this caused the wall to distend and the gap area between the leaflets to increase by 33%. Additionally, the stress in the leaflets increased around the chordal connection points near the gap. CONCLUSIONS The methodology outlined in this work will allow a finite element model of both the left ventricle and mitral valve to be generated using noninvasive techniques.


Journal of Biomechanical Engineering-transactions of The Asme | 2009

A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm

Kay Sun; Nielen Stander; Choon-Sik Jhun; Zhihong Zhang; Takamaro Suzuki; Guan-Ying Wang; Maythem Saeed; Arthur W. Wallace; Elaine E. Tseng; Anthony J. Baker; David Saloner; Daniel R. Einstein; Mark B. Ratcliffe; Julius M. Guccione

A non-invasive method for estimating regional myocardial contractility in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent infarction-induced heart failure. As a first step towards developing such a method, an explicit finite element (FE) model-based formal optimization of regional myocardial contractility in a sheep with left ventricular (LV) aneurysm was performed using tagged magnetic resonance (MR) images and cardiac catheterization pressures. From the tagged MR images, 3-dimensional (3D) myocardial strains, LV volumes and geometry for the animal-specific 3D FE model of the LV were calculated, while the LV pressures provided physiological loading conditions. Active material parameters (T(max_B) and T(max_R)) in the non-infarcted myocardium adjacent to the aneurysm (borderzone) and in myocardium remote from the aneurysm were estimated by minimizing the errors between FE model-predicted and measured systolic strains and LV volumes using the successive response surface method for optimization. The significant depression in optimized T(max_B) relative to T(max_R) was confirmed by direct ex vivo force measurements from skinned fiber preparations. The optimized values of T(max_B) and T(max_R) were not overly sensitive to the passive material parameters specified. The computation time of less than 5 hours associated with our proposed method for estimating regional myocardial contractility in vivo makes it a potentially very useful clinical tool.


Annals of Biomedical Engineering | 2012

Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery

Sethuraman Sankaran; Mahdi Esmaily Moghadam; Andrew M. Kahn; Elaine E. Tseng; Julius M. Guccione; Alison L. Marsden

We present a computational framework for multiscale modeling and simulation of blood flow in coronary artery bypass graft (CABG) patients. Using this framework, only CT and non-invasive clinical measurements are required without the need to assume pressure and/or flow waveforms in the coronaries and we can capture global circulatory dynamics. We demonstrate this methodology in a case study of a patient with multiple CABGs. A patient-specific model of the blood vessels is constructed from CT image data to include the aorta, aortic branch vessels (brachiocephalic artery and carotids), the coronary arteries and multiple bypass grafts. The rest of the circulatory system is modeled using a lumped parameter network (LPN) 0 dimensional (0D) system comprised of resistances, capacitors (compliance), inductors (inertance), elastance and diodes (valves) that are tuned to match patient-specific clinical data. A finite element solver is used to compute blood flow and pressure in the 3D (3 dimensional) model, and this solver is implicitly coupled to the 0D LPN code at all inlets and outlets. By systematically parameterizing the graft geometry, we evaluate the influence of graft shape on the local hemodynamics, and global circulatory dynamics. Virtual manipulation of graft geometry is automated using Bezier splines and control points along the pathlines. Using this framework, we quantify wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries. We also compare pressures, flow rates and ventricular pressure–volume loops pre- and post-bypass graft surgery. We observe that PV loops do not change significantly after CABG but that both coronary perfusion and local hemodynamic parameters near the anastomosis region change substantially. Implications for future patient-specific optimization of CABG are discussed.

Collaboration


Dive into the Julius M. Guccione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Ge

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhihong Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Saloner

University of California

View shared research outputs
Top Co-Authors

Avatar

Lik Chuan Lee

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge