Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jumana Y. Al-Aama is active.

Publication


Featured researches published by Jumana Y. Al-Aama.


Cell Host & Microbe | 2015

Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life.

Fredrik Bäckhed; Yangqing Peng; Qiang Feng; Huijue Jia; Petia Kovatcheva-Datchary; Yin Li; Yan Xia; Hailiang Xie; Huanzi Zhong; Muhammad Tanweer Khan; Jianfeng Zhang; Junhua Li; Liang Xiao; Jumana Y. Al-Aama; Dongya Zhang; Ying Shiuan Lee; Dorota Ewa Kotowska; Camilla Colding; Valentina Tremaroli; Ye Yin; Stefan Bergman; Xun Xu; Lise Madsen; Karsten Kristiansen; Jovanna Dahlgren; Jun Wang

The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first year of life and assessed the impact of mode of delivery and feeding on its establishment. In contrast to vaginally delivered infants, the gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers. Nutrition had a major impact on early microbiota composition and function, with cessation of breast-feeding, rather than introduction of solid food, being required for maturation into an adult-like microbiota. Microbiota composition and ecological network had distinctive features at each sampled stage, in accordance with functional maturation of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life.


Nature Biotechnology | 2014

An integrated catalog of reference genes in the human gut microbiome

Junhua Li; Huijue Jia; Xianghang Cai; Huanzi Zhong; Qiang Feng; Shinichi Sunagawa; Manimozhiyan Arumugam; Jens Roat Kultima; Edi Prifti; Trine Nielsen; Agnieszka Sierakowska Juncker; Chaysavanh Manichanh; Bing Chen; Wenwei Zhang; Florence Levenez; Juan Wang; Xun Xu; Liang Xiao; Suisha Liang; Dongya Zhang; Zhaoxi Zhang; Weineng Chen; Hailong Zhao; Jumana Y. Al-Aama; Sherif Edris; Huanming Yang; Jian Wang; Torben Hansen; Henrik Bjørn Nielsen; Søren Brunak

Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly sequenced samples of the Metagenomics of the Human Intestinal Tract (MetaHit) project with 1,018 previously sequenced samples to create a cohort from three continents that is at least threefold larger than cohorts used for previous gene catalogs. From this we established the integrated gene catalog (IGC) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.


Nature Medicine | 2015

The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment

Dongya Zhang; Huijue Jia; Qiang Feng; Donghui Wang; Di Liang; Xiang-ni Wu; Junhua Li; Longqing Tang; Yin Li; Zhou Lan; Bing Chen; Yanli Li; Huanzi Zhong; Hailiang Xie; Zhuye Jie; Weineng Chen; Shanmei Tang; Xiaoqiang Xu; Xiaokai Wang; Xianghang Cai; Sheng Liu; Yan Xia; Jiyang Li; Xingye Qiao; Jumana Y. Al-Aama; Hua Chen; Wang L; Qingjun Wu; Fengchun Zhang; Wenjie Zheng

We carried out metagenomic shotgun sequencing and a metagenome-wide association study (MGWAS) of fecal, dental and salivary samples from a cohort of individuals with rheumatoid arthritis (RA) and healthy controls. Concordance was observed between the gut and oral microbiomes, suggesting overlap in the abundance and function of species at different body sites. Dysbiosis was detected in the gut and oral microbiomes of RA patients, but it was partially resolved after RA treatment. Alterations in the gut, dental or saliva microbiome distinguished individuals with RA from healthy controls, were correlated with clinical measures and could be used to stratify individuals on the basis of their response to therapy. In particular, Haemophilus spp. were depleted in individuals with RA at all three sites and negatively correlated with levels of serum autoantibodies, whereas Lactobacillus salivarius was over-represented in individuals with RA at all three sites and was present in increased amounts in cases of very active RA. Functionally, the redox environment, transport and metabolism of iron, sulfur, zinc and arginine were altered in the microbiota of individuals with RA. Molecular mimicry of human antigens related to RA was also detectable. Our results establish specific alterations in the gut and oral microbiomes in individuals with RA and suggest potential ways of using microbiome composition for prognosis and diagnosis.


Science | 2014

Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders

Gaia Novarino; Ali G. Fenstermaker; Maha S. Zaki; Matan Hofree; Jennifer L. Silhavy; Andrew Heiberg; Mostafa Abdellateef; Basak Rosti; Eric Scott; Lobna Mansour; Amira Masri; Hülya Kayserili; Jumana Y. Al-Aama; Ghada M.H. Abdel-Salam; Ariana Karminejad; Majdi Kara; Bülent Kara; Bita Bozorgmehri; Tawfeg Ben-Omran; Faezeh Mojahedi; Iman Gamal El Din Mahmoud; Naima Bouslam; Ahmed Bouhouche; Ali Benomar; Sylvain Hanein; Laure Raymond; Sylvie Forlani; Massimo Mascaro; Laila Selim; Nabil Shehata

Neurodegenerative Genetics The underlying genetics of neurodegenerative disorders tend not to be well understood. Novarino et al. (p. 506; see the Perspective by Singleton) investigated the underlying genetics of hereditary spastic paraplegia (HSP), a human neurodegenerative disease, by sequencing the exomes of individuals with recessive neurological disorders. Loss-of-function gene mutations in both novel genes and genes previously implicated for this condition were identified, and several were functionally validated. Analysis of hereditary spastic paraplegia genes identifies mutants involved in human neurodegenerative disease. [Also see Perspective by Singleton] Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.


Nature Communications | 2015

Gut microbiome development along the colorectal adenoma–carcinoma sequence

Qi Feng; Suisha Liang; Huijue Jia; Stadlmayr A; Longqing Tang; Zhou Lan; Dongya Zhang; Huihua Xia; Xuenian Xu; Zhuye Jie; Su L; Xueyong Li; Jinxiu Li; Liang Xiao; U Huber-Schönauer; Niederseer D; Jumana Y. Al-Aama; Yang H; Jun Wang; Karsten Kristiansen; Manimozhiyan Arumugam; Herbert Tilg; Christian Datz

Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from benign polyps called adenoma. The gut microbiota is believed to be directly involved in colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-related gut microbe(s), however, have not been surveyed in a comprehensive manner. Here we perform a metagenome-wide association study (MGWAS) on stools from advanced adenoma and carcinoma patients and from healthy subjects, revealing microbial genes, strains and functions enriched in each group. An analysis of potential risk factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment of colorectal adenoma or carcinoma.


Nature | 2014

A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes

Ida Moltke; Niels Grarup; Marit E. Jørgensen; Peter Bjerregaard; Jonas T. Treebak; Matteo Fumagalli; Thorfinn Sand Korneliussen; Marianne A. Andersen; Thomas Alexander Sick Nielsen; Nikolaj T. Krarup; Anette P. Gjesing; Juleen R. Zierath; Allan Linneberg; Xueli Wu; Guangqing Sun; Xin Jin; Jumana Y. Al-Aama; Jun Wang; Knut Borch-Johnsen; Oluf Pedersen; Rasmus Nielsen; Anders Albrechtsen; Torben Hansen

The Greenlandic population, a small and historically isolated founder population comprising about 57,000 inhabitants, has experienced a dramatic increase in type 2 diabetes (T2D) prevalence during the past 25 years. Motivated by this, we performed association mapping of T2D-related quantitative traits in up to 2,575 Greenlandic individuals without known diabetes. Using array-based genotyping and exome sequencing, we discovered a nonsense p.Arg684Ter variant (in which arginine is replaced by a termination codon) in the gene TBC1D4 with an allele frequency of 17%. Here we show that homozygous carriers of this variant have markedly higher concentrations of plasma glucose (β = 3.8 mmol l−1, P = 2.5 × 10−35) and serum insulin (β = 165 pmol l−1, P = 1.5 × 10−20) 2 hours after an oral glucose load compared with individuals with other genotypes (both non-carriers and heterozygous carriers). Furthermore, homozygous carriers have marginally lower concentrations of fasting plasma glucose (β = −0.18 mmol l−1, P = 1.1 × 10−6) and fasting serum insulin (β = −8.3 pmol l−1, P = 0.0014), and their T2D risk is markedly increased (odds ratio (OR) = 10.3, P = 1.6 × 10−24). Heterozygous carriers have a moderately higher plasma glucose concentration 2 hours after an oral glucose load than non-carriers (β = 0.43 mmol l−1, P = 5.3 × 10−5). Analyses of skeletal muscle biopsies showed lower messenger RNA and protein levels of the long isoform of TBC1D4, and lower muscle protein levels of the glucose transporter GLUT4, with increasing number of p.Arg684Ter alleles. These findings are concomitant with a severely decreased insulin-stimulated glucose uptake in muscle, leading to postprandial hyperglycaemia, impaired glucose tolerance and T2D. The observed effect sizes are several times larger than any previous findings in large-scale genome-wide association studies of these traits and constitute further proof of the value of conducting genetic association studies outside the traditional setting of large homogeneous populations.


Nature Genetics | 2011

Mutations in the pre-replication complex cause Meier-Gorlin syndrome

Louise S. Bicknell; Ernie M.H.F. Bongers; Andrea Leitch; Stephen Brown; Jeroen Schoots; Margaret E. Harley; Salim Aftimos; Jumana Y. Al-Aama; Michael B. Bober; Paul Brown; Hans van Bokhoven; John Dean; Alaa Y. Edrees; Murray Feingold; Alan Fryer; Lies H. Hoefsloot; Nikolaus Kau; N.V.A.M. Knoers; James MacKenzie; John M. Opitz; Pierre Sarda; Alison Ross; I. Karen Temple; Annick Toutain; Carol A. Wise; Michael Wright; Andrew P. Jackson

Meier-Gorlin syndrome (ear, patella and short-stature syndrome) is an autosomal recessive primordial dwarfism syndrome characterized by absent or hypoplastic patellae and markedly small ears. Both pre- and post-natal growth are impaired in this disorder, and although microcephaly is often evident, intellect is usually normal in this syndrome. We report here that individuals with this disorder show marked locus heterogeneity, and we identify mutations in five separate genes: ORC1, ORC4, ORC6, CDT1 and CDC6. All of these genes encode components of the pre-replication complex, implicating defects in replication licensing as the cause of a genetic syndrome with distinct developmental abnormalities.


PLOS ONE | 2013

Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies

Tobias Eisenberger; Christine Neuhaus; Arif O. Khan; Christian Decker; Markus N. Preising; Christoph Friedburg; Anika Bieg; Martin Gliem; Peter Charbel Issa; Frank G. Holz; Shahid Mahmood Baig; Yorck Hellenbroich; Alberto Galvez; Konrad Platzer; Bernd Wollnik; Nadja Laddach; Saeed Reza Ghaffari; Maryam Rafati; Elke M. Botzenhart; Sigrid Tinschert; Doris Börger; Axel Bohring; Julia Schreml; Stefani Körtge-Jung; Chayim Schell-Apacik; Khadijah Bakur; Jumana Y. Al-Aama; Teresa Neuhann; Peter Herkenrath; Gudrun Nürnberg

Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.


Human Molecular Genetics | 2009

Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival

Vishwanathan Hucthagowder; Eva Morava; Uwe Kornak; Dirk J. Lefeber; Björn Fischer; Aikaterini Dimopoulou; Annika Aldinger; Jiwon Choi; Elaine C. Davis; Dianne N. Abuelo; Maciej Adamowicz; Jumana Y. Al-Aama; Lina Basel-Vanagaite; Bridget A. Fernandez; Marie T. Greally; Gabriele Gillessen-Kaesbach; Hülya Kayserili; Emmanuelle Lemyre; Mustafa Tekin; Seval Türkmen; Beyhan Tüysüz; Berrin Yüksel-Konuk; Stefan Mundlos; Lionel Van Maldergem; Ron A. Wevers; Zsolt Urban

Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue lesions in ARCL2. In a new cohort of 17 patients, DNA sequencing of ATP6V0A2 detected either homozygous or compound heterozygous mutations. Considerable allelic and phenotypic heterogeneity was observed, with a missense mutation of a moderately conserved residue p.P87L leading to unusually mild disease. Abnormal N- and/or mucin type O-glycosylation was observed in all patients tested. Premature stop codon mutations led to decreased ATP6V0A2 mRNA levels by destabilizing the mutant mRNA via the nonsense-mediated decay pathway. Loss of ATP6V0A2 either by siRNA knockdown or in ARCL2 cells resulted in distended Golgi cisternae, accumulation of abnormal lysosomes and multivesicular bodies. Immunostaining of ARCL2 cells showed the accumulation of tropoelastin (TE) in the Golgi and in large, abnormal intracellular and extracellular aggregates. Pulse-chase studies confirmed impaired secretion and increased intracellular retention of TE, and insoluble elastin assays showed significantly reduced extracellular deposition of mature elastin. Fibrillin-1 microfibril assembly and secreted lysyl oxidase activity were normal in ARCL2 cells. TUNEL staining demonstrated increased rates of apoptosis in ARCL2 cell cultures. We conclude that loss-of-function mutations in ATP6V0A2 lead to TE aggregation in the Golgi, impaired clearance of TE aggregates and increased apoptosis of elastogenic cells.


Gut | 2017

Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer

J Yu; Qiang Feng; Dongya Zhang; Qiaoyi Liang; Qin Y; Longqing Tang; Zhao H; Jan Stenvang; Yingrui Li; Xiaojuan Wang; Xuenian Xu; Nan Chen; William Ka Kei Wu; Jumana Y. Al-Aama; Hans Jørgen Nielsen; Pia Kiilerich; Benjamin Anderschou Holbech Jensen; Yau To; Zhou Lan; Huijue Jia; Jinxiu Li; Liang Xiao; Thomas Y. Lam; Siew C. Ng; Alfred Sl Cheng; Vincent Wai-Sun Wong; F. K. L. Chan; Yang H; Lise Madsen; Christian Datz

Objective To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes. Design We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls. Results Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I–II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. Conclusions We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.

Collaboration


Dive into the Jumana Y. Al-Aama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramu Elango

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Saleem Ahmed

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Alaa Y. Edrees

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge